123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547 |
- *DECK QAWOE
- SUBROUTINE QAWOE (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, LIMIT,
- + ICALL, MAXP1, RESULT, ABSERR, NEVAL, IER, LAST, ALIST, BLIST,
- + RLIST, ELIST, IORD, NNLOG, MOMCOM, CHEBMO)
- C***BEGIN PROLOGUE QAWOE
- C***PURPOSE Calculate an approximation to a given definite integral
- C I = Integral of F(X)*W(X) over (A,B), where
- C W(X) = COS(OMEGA*X)
- C or W(X) = SIN(OMEGA*X),
- C hopefully satisfying the following claim for accuracy
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A2A1
- C***TYPE SINGLE PRECISION (QAWOE-S, DQAWOE-D)
- C***KEYWORDS AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
- C EXTRAPOLATION, GLOBALLY ADAPTIVE,
- C INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
- C QUADRATURE, SPECIAL-PURPOSE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Computation of Oscillatory integrals
- C Standard fortran subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the driver program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration
- C
- C OMEGA - Real
- C Parameter in the integrand weight function
- C
- C INTEGR - Integer
- C Indicates which of the WEIGHT functions is to be
- C used
- C INTEGR = 1 W(X) = COS(OMEGA*X)
- C INTEGR = 2 W(X) = SIN(OMEGA*X)
- C If INTEGR.NE.1 and INTEGR.NE.2, the routine
- C will end with IER = 6.
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C the routine will end with IER = 6.
- C
- C LIMIT - Integer
- C Gives an upper bound on the number of subdivisions
- C in the partition of (A,B), LIMIT.GE.1.
- C
- C ICALL - Integer
- C If QAWOE is to be used only once, ICALL must
- C be set to 1. Assume that during this call, the
- C Chebyshev moments (for CLENSHAW-CURTIS integration
- C of degree 24) have been computed for intervals of
- C lengths (ABS(B-A))*2**(-L), L=0,1,2,...MOMCOM-1.
- C If ICALL.GT.1 this means that QAWOE has been
- C called twice or more on intervals of the same
- C length ABS(B-A). The Chebyshev moments already
- C computed are then re-used in subsequent calls.
- C If ICALL.LT.1, the routine will end with IER = 6.
- C
- C MAXP1 - Integer
- C Gives an upper bound on the number of Chebyshev
- C moments which can be stored, i.e. for the
- C intervals of lengths ABS(B-A)*2**(-L),
- C L=0,1, ..., MAXP1-2, MAXP1.GE.1.
- C If MAXP1.LT.1, the routine will end with IER = 6.
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should equal or exceed ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - Integer
- C IER = 0 Normal and reliable termination of the
- C routine. It is assumed that the
- C requested accuracy has been achieved.
- C - IER.GT.0 Abnormal termination of the routine.
- C The estimates for integral and error are
- C less reliable. It is assumed that the
- C requested accuracy has not been achieved.
- C ERROR MESSAGES
- C IER = 1 Maximum number of subdivisions allowed
- C has been achieved. One can allow more
- C subdivisions by increasing the value of
- C LIMIT (and taking according dimension
- C adjustments into account). However, if
- C this yields no improvement it is advised
- C to analyze the integrand, in order to
- C determine the integration difficulties.
- C If the position of a local difficulty can
- C be determined (e.g. SINGULARITY,
- C DISCONTINUITY within the interval) one
- C will probably gain from splitting up the
- C interval at this point and calling the
- C integrator on the subranges. If possible,
- C an appropriate special-purpose integrator
- C should be used which is designed for
- C handling the type of difficulty involved.
- C = 2 The occurrence of roundoff error is
- C detected, which prevents the requested
- C tolerance from being achieved.
- C The error may be under-estimated.
- C = 3 Extremely bad integrand behaviour occurs
- C at some points of the integration
- C interval.
- C = 4 The algorithm does not converge.
- C Roundoff error is detected in the
- C extrapolation table.
- C It is presumed that the requested
- C tolerance cannot be achieved due to
- C roundoff in the extrapolation table,
- C and that the returned result is the
- C best which can be obtained.
- C = 5 The integral is probably divergent, or
- C slowly convergent. It must be noted that
- C divergence can occur with any other value
- C of IER.GT.0.
- C = 6 The input is invalid, because
- C (EPSABS.LE.0 and
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
- C or (INTEGR.NE.1 and INTEGR.NE.2) or
- C ICALL.LT.1 or MAXP1.LT.1.
- C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
- C ELIST(1), IORD(1) and NNLOG(1) are set
- C to ZERO. ALIST(1) and BLIST(1) are set
- C to A and B respectively.
- C
- C LAST - Integer
- C On return, LAST equals the number of
- C subintervals produces in the subdivision
- C process, which determines the number of
- C significant elements actually in the
- C WORK ARRAYS.
- C ALIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the left
- C end points of the subintervals in the partition
- C of the given integration range (A,B)
- C
- C BLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the right
- C end points of the subintervals in the partition
- C of the given integration range (A,B)
- C
- C RLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the integral
- C approximations on the subintervals
- C
- C ELIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the moduli of the
- C absolute error estimates on the subintervals
- C
- C IORD - Integer
- C Vector of dimension at least LIMIT, the first K
- C elements of which are pointers to the error
- C estimates over the subintervals,
- C such that ELIST(IORD(1)), ...,
- C ELIST(IORD(K)) form a decreasing sequence, with
- C K = LAST if LAST.LE.(LIMIT/2+2), and
- C K = LIMIT+1-LAST otherwise.
- C
- C NNLOG - Integer
- C Vector of dimension at least LIMIT, containing the
- C subdivision levels of the subintervals, i.e.
- C IWORK(I) = L means that the subinterval
- C numbered I is of length ABS(B-A)*2**(1-L)
- C
- C ON ENTRY AND RETURN
- C MOMCOM - Integer
- C Indicating that the Chebyshev moments
- C have been computed for intervals of lengths
- C (ABS(B-A))*2**(-L), L=0,1,2, ..., MOMCOM-1,
- C MOMCOM.LT.MAXP1
- C
- C CHEBMO - Real
- C Array of dimension (MAXP1,25) containing the
- C Chebyshev moments
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QC25F, QELG, QPSRT, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE QAWOE
- C
- REAL A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
- 1 A2,B,BLIST,B1,B2,CHEBMO,CORREC,DEFAB1,DEFAB2,DEFABS,
- 2 DOMEGA,R1MACH,DRES,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,
- 3 ERLAST,ERRBND,ERRMAX,ERROR1,ERRO12,ERROR2,ERRSUM,ERTEST,F,OFLOW,
- 4 OMEGA,RESABS,RESEPS,RESULT,RES3LA,RLIST,RLIST2,SMALL,UFLOW,WIDTH
- INTEGER ICALL,ID,IER,IERRO,INTEGR,IORD,IROFF1,IROFF2,IROFF3,
- 1 JUPBND,K,KSGN,KTMIN,LAST,LIMIT,MAXERR,MAXP1,MOMCOM,NEV,
- 2 NEVAL,NNLOG,NRES,NRMAX,NRMOM,NUMRL2
- LOGICAL EXTRAP,NOEXT,EXTALL
- C
- DIMENSION ALIST(*),BLIST(*),RLIST(*),ELIST(*),
- 1 IORD(*),RLIST2(52),RES3LA(3),CHEBMO(MAXP1,25),NNLOG(*)
- C
- EXTERNAL F
- C
- C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
- C LIMEXP IN SUBROUTINE QELG (RLIST2 SHOULD BE OF
- C DIMENSION (LIMEXP+2) AT LEAST).
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
- C (ALIST(I),BLIST(I))
- C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
- C CONTAINING THE PART OF THE EPSILON TABLE
- C WHICH IS STILL NEEDED FOR FURTHER COMPUTATIONS
- C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
- C MAXERR - POINTER TO THE INTERVAL WITH LARGEST
- C ERROR ESTIMATE
- C ERRMAX - ELIST(MAXERR)
- C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
- C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
- C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
- C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
- C ABS(RESULT))
- C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
- C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
- C LAST - INDEX FOR SUBDIVISION
- C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
- C NUMRL2 - NUMBER OF ELEMENTS IN RLIST2. IF AN APPROPRIATE
- C APPROXIMATION TO THE COMPOUNDED INTEGRAL HAS
- C BEEN OBTAINED IT IS PUT IN RLIST2(NUMRL2) AFTER
- C NUMRL2 HAS BEEN INCREASED BY ONE
- C SMALL - LENGTH OF THE SMALLEST INTERVAL CONSIDERED
- C UP TO NOW, MULTIPLIED BY 1.5
- C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
- C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
- C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE IS
- C ATTEMPTING TO PERFORM EXTRAPOLATION, I.E. BEFORE
- C SUBDIVIDING THE SMALLEST INTERVAL WE TRY TO
- C DECREASE THE VALUE OF ERLARG
- C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION
- C IS NO LONGER ALLOWED (TRUE VALUE)
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QAWOE
- EPMACH = R1MACH(4)
- C
- C TEST ON VALIDITY OF PARAMETERS
- C ------------------------------
- C
- IER = 0
- NEVAL = 0
- LAST = 0
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- ALIST(1) = A
- BLIST(1) = B
- RLIST(1) = 0.0E+00
- ELIST(1) = 0.0E+00
- IORD(1) = 0
- NNLOG(1) = 0
- IF((INTEGR.NE.1.AND.INTEGR.NE.2).OR.(EPSABS.LE.0.0E+00.AND.
- 1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14)).OR.ICALL.LT.1.OR.
- 2 MAXP1.LT.1) IER = 6
- IF(IER.EQ.6) GO TO 999
- C
- C FIRST APPROXIMATION TO THE INTEGRAL
- C -----------------------------------
- C
- DOMEGA = ABS(OMEGA)
- NRMOM = 0
- IF (ICALL.GT.1) GO TO 5
- MOMCOM = 0
- 5 CALL QC25F(F,A,B,DOMEGA,INTEGR,NRMOM,MAXP1,0,RESULT,ABSERR,
- 1 NEVAL,DEFABS,RESABS,MOMCOM,CHEBMO)
- C
- C TEST ON ACCURACY.
- C
- DRES = ABS(RESULT)
- ERRBND = MAX(EPSABS,EPSREL*DRES)
- RLIST(1) = RESULT
- ELIST(1) = ABSERR
- IORD(1) = 1
- IF(ABSERR.LE.0.1E+03*EPMACH*DEFABS.AND.ABSERR.GT.
- 1 ERRBND) IER = 2
- IF(LIMIT.EQ.1) IER = 1
- IF(IER.NE.0.OR.ABSERR.LE.ERRBND) GO TO 200
- C
- C INITIALIZATIONS
- C ---------------
- C
- UFLOW = R1MACH(1)
- OFLOW = R1MACH(2)
- ERRMAX = ABSERR
- MAXERR = 1
- AREA = RESULT
- ERRSUM = ABSERR
- ABSERR = OFLOW
- NRMAX = 1
- EXTRAP = .FALSE.
- NOEXT = .FALSE.
- IERRO = 0
- IROFF1 = 0
- IROFF2 = 0
- IROFF3 = 0
- KTMIN = 0
- SMALL = ABS(B-A)*0.75E+00
- NRES = 0
- NUMRL2 = 0
- EXTALL = .FALSE.
- IF(0.5E+00*ABS(B-A)*DOMEGA.GT.0.2E+01) GO TO 10
- NUMRL2 = 1
- EXTALL = .TRUE.
- RLIST2(1) = RESULT
- 10 IF(0.25E+00*ABS(B-A)*DOMEGA.LE.0.2E+01) EXTALL = .TRUE.
- KSGN = -1
- IF(DRES.GE.(0.1E+01-0.5E+02*EPMACH)*DEFABS) KSGN = 1
- C
- C MAIN DO-LOOP
- C ------------
- C
- DO 140 LAST = 2,LIMIT
- C
- C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST
- C ERROR ESTIMATE.
- C
- NRMOM = NNLOG(MAXERR)+1
- A1 = ALIST(MAXERR)
- B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
- A2 = B1
- B2 = BLIST(MAXERR)
- ERLAST = ERRMAX
- CALL QC25F(F,A1,B1,DOMEGA,INTEGR,NRMOM,MAXP1,0,
- 1 AREA1,ERROR1,NEV,RESABS,DEFAB1,MOMCOM,CHEBMO)
- NEVAL = NEVAL+NEV
- CALL QC25F(F,A2,B2,DOMEGA,INTEGR,NRMOM,MAXP1,1,
- 1 AREA2,ERROR2,NEV,RESABS,DEFAB2,MOMCOM,CHEBMO)
- NEVAL = NEVAL+NEV
- C
- C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
- C AND ERROR AND TEST FOR ACCURACY.
- C
- AREA12 = AREA1+AREA2
- ERRO12 = ERROR1+ERROR2
- ERRSUM = ERRSUM+ERRO12-ERRMAX
- AREA = AREA+AREA12-RLIST(MAXERR)
- IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 25
- IF(ABS(RLIST(MAXERR)-AREA12).GT.0.1E-04*ABS(AREA12)
- 1 .OR.ERRO12.LT.0.99E+00*ERRMAX) GO TO 20
- IF(EXTRAP) IROFF2 = IROFF2+1
- IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
- 20 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
- 25 RLIST(MAXERR) = AREA1
- RLIST(LAST) = AREA2
- NNLOG(MAXERR) = NRMOM
- NNLOG(LAST) = NRMOM
- ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
- C
- C TEST FOR ROUNDOFF ERROR AND EVENTUALLY
- C SET ERROR FLAG
- C
- IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
- IF(IROFF2.GE.5) IERRO = 3
- C
- C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF
- C SUBINTERVALS EQUALS LIMIT.
- C
- IF(LAST.EQ.LIMIT) IER = 1
- C
- C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
- C AT A POINT OF THE INTEGRATION RANGE.
- C
- IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)
- 1 *(ABS(A2)+0.1E+04*UFLOW)) IER = 4
- C
- C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
- C
- IF(ERROR2.GT.ERROR1) GO TO 30
- ALIST(LAST) = A2
- BLIST(MAXERR) = B1
- BLIST(LAST) = B2
- ELIST(MAXERR) = ERROR1
- ELIST(LAST) = ERROR2
- GO TO 40
- 30 ALIST(MAXERR) = A2
- ALIST(LAST) = A1
- BLIST(LAST) = B1
- RLIST(MAXERR) = AREA2
- RLIST(LAST) = AREA1
- ELIST(MAXERR) = ERROR2
- ELIST(LAST) = ERROR1
- C
- C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
- C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
- C SUBINTERVAL WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE
- C BISECTED NEXT).
- C
- 40 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
- C ***JUMP OUT OF DO-LOOP
- IF(ERRSUM.LE.ERRBND) GO TO 170
- IF(IER.NE.0) GO TO 150
- IF(LAST.EQ.2.AND.EXTALL) GO TO 120
- IF(NOEXT) GO TO 140
- IF(.NOT.EXTALL) GO TO 50
- ERLARG = ERLARG-ERLAST
- IF(ABS(B1-A1).GT.SMALL) ERLARG = ERLARG+ERRO12
- IF(EXTRAP) GO TO 70
- C
- C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
- C SMALLEST INTERVAL.
- C
- 50 WIDTH = ABS(BLIST(MAXERR)-ALIST(MAXERR))
- IF(WIDTH.GT.SMALL) GO TO 140
- IF(EXTALL) GO TO 60
- C
- C TEST WHETHER WE CAN START WITH THE EXTRAPOLATION
- C PROCEDURE (WE DO THIS IF WE INTEGRATE OVER THE
- C NEXT INTERVAL WITH USE OF A GAUSS-KRONROD RULE - SEE
- C SUBROUTINE QC25F).
- C
- SMALL = SMALL*0.5E+00
- IF(0.25E+00*WIDTH*DOMEGA.GT.0.2E+01) GO TO 140
- EXTALL = .TRUE.
- GO TO 130
- 60 EXTRAP = .TRUE.
- NRMAX = 2
- 70 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 90
- C
- C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
- C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS
- C OVER THE LARGER INTERVALS (ERLARG) AND PERFORM
- C EXTRAPOLATION.
- C
- JUPBND = LAST
- IF (LAST.GT.(LIMIT/2+2)) JUPBND = LIMIT+3-LAST
- ID = NRMAX
- DO 80 K = ID,JUPBND
- MAXERR = IORD(NRMAX)
- ERRMAX = ELIST(MAXERR)
- IF(ABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 140
- NRMAX = NRMAX+1
- 80 CONTINUE
- C
- C PERFORM EXTRAPOLATION.
- C
- 90 NUMRL2 = NUMRL2+1
- RLIST2(NUMRL2) = AREA
- IF(NUMRL2.LT.3) GO TO 110
- CALL QELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
- KTMIN = KTMIN+1
- IF(KTMIN.GT.5.AND.ABSERR.LT.0.1E-02*ERRSUM) IER = 5
- IF(ABSEPS.GE.ABSERR) GO TO 100
- KTMIN = 0
- ABSERR = ABSEPS
- RESULT = RESEPS
- CORREC = ERLARG
- ERTEST = MAX(EPSABS,EPSREL*ABS(RESEPS))
- C ***JUMP OUT OF DO-LOOP
- IF(ABSERR.LE.ERTEST) GO TO 150
- C
- C PREPARE BISECTION OF THE SMALLEST INTERVAL.
- C
- 100 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
- IF(IER.EQ.5) GO TO 150
- 110 MAXERR = IORD(1)
- ERRMAX = ELIST(MAXERR)
- NRMAX = 1
- EXTRAP = .FALSE.
- SMALL = SMALL*0.5E+00
- ERLARG = ERRSUM
- GO TO 140
- 120 SMALL = SMALL*0.5E+00
- NUMRL2 = NUMRL2+1
- RLIST2(NUMRL2) = AREA
- 130 ERTEST = ERRBND
- ERLARG = ERRSUM
- 140 CONTINUE
- C
- C SET THE FINAL RESULT.
- C ---------------------
- C
- 150 IF(ABSERR.EQ.OFLOW.OR.NRES.EQ.0) GO TO 170
- IF(IER+IERRO.EQ.0) GO TO 165
- IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
- IF(IER.EQ.0) IER = 3
- IF(RESULT.NE.0.0E+00.AND.AREA.NE.0.0E+00) GO TO 160
- IF(ABSERR.GT.ERRSUM) GO TO 170
- IF(AREA.EQ.0.0E+00) GO TO 190
- GO TO 165
- 160 IF(ABSERR/ABS(RESULT).GT.ERRSUM/ABS(AREA)) GO TO 170
- C
- C TEST ON DIVERGENCE.
- C
- 165 IF(KSGN.EQ.(-1).AND.MAX(ABS(RESULT),ABS(AREA)).LE.
- 1 DEFABS*0.1E-01) GO TO 190
- IF(0.1E-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1E+03
- 1 .OR.ERRSUM.GE.ABS(AREA)) IER = 6
- GO TO 190
- C
- C COMPUTE GLOBAL INTEGRAL SUM.
- C
- 170 RESULT = 0.0E+00
- DO 180 K=1,LAST
- RESULT = RESULT+RLIST(K)
- 180 CONTINUE
- ABSERR = ERRSUM
- 190 IF (IER.GT.2) IER=IER-1
- 200 IF (INTEGR.EQ.2.AND.OMEGA.LT.0.0E+00) RESULT=-RESULT
- 999 RETURN
- END
|