123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- *DECK QAWS
- SUBROUTINE QAWS (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
- + RESULT, ABSERR, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
- C***BEGIN PROLOGUE QAWS
- C***PURPOSE The routine calculates an approximation result to a given
- C definite integral I = Integral of F*W over (A,B),
- C (where W shows a singular behaviour at the end points
- C see parameter INTEGR).
- C Hopefully satisfying following claim for accuracy
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A2A1
- C***TYPE SINGLE PRECISION (QAWS-S, DQAWS-D)
- C***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
- C AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
- C GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE, SPECIAL-PURPOSE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Integration of functions having algebraico-logarithmic
- C end point singularities
- C Standard fortran subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the driver program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration, B.GT.A
- C If B.LE.A, the routine will end with IER = 6.
- C
- C ALFA - Real
- C Parameter in the integrand function, ALFA.GT.(-1)
- C If ALFA.LE.(-1), the routine will end with
- C IER = 6.
- C
- C BETA - Real
- C Parameter in the integrand function, BETA.GT.(-1)
- C If BETA.LE.(-1), the routine will end with
- C IER = 6.
- C
- C INTEGR - Integer
- C Indicates which WEIGHT function is to be used
- C = 1 (X-A)**ALFA*(B-X)**BETA
- C = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
- C = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
- C = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
- C If INTEGR.LT.1 or INTEGR.GT.4, the routine
- C will end with IER = 6.
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C the routine will end with IER = 6.
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C Which should equal or exceed ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - Integer
- C IER = 0 Normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C IER.GT.0 Abnormal termination of the routine
- C The estimates for the integral and error
- C are less reliable. It is assumed that the
- C requested accuracy has not been achieved.
- C ERROR MESSAGES
- C IER = 1 Maximum number of subdivisions allowed
- C has been achieved. One can allow more
- C subdivisions by increasing the value of
- C LIMIT (and taking the according dimension
- C adjustments into account). However, if
- C this yields no improvement it is advised
- C to analyze the integrand, in order to
- C determine the integration difficulties
- C which prevent the requested tolerance from
- C being achieved. In case of a jump
- C discontinuity or a local singularity
- C of algebraico-logarithmic type at one or
- C more interior points of the integration
- C range, one should proceed by splitting up
- C the interval at these points and calling
- C the integrator on the subranges.
- C = 2 The occurrence of roundoff error is
- C detected, which prevents the requested
- C tolerance from being achieved.
- C = 3 Extremely bad integrand behaviour occurs
- C at some points of the integration
- C interval.
- C = 6 The input is invalid, because
- C B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1) or
- C or INTEGR.LT.1 or INTEGR.GT.4 or
- C (EPSABS.LE.0 and
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
- C or LIMIT.LT.2 or LENW.LT.LIMIT*4.
- C RESULT, ABSERR, NEVAL, LAST are set to
- C zero. Except when LENW or LIMIT is invalid
- C IWORK(1), WORK(LIMIT*2+1) and
- C WORK(LIMIT*3+1) are set to zero, WORK(1)
- C is set to A and WORK(LIMIT+1) to B.
- C
- C DIMENSIONING PARAMETERS
- C LIMIT - Integer
- C Dimensioning parameter for IWORK
- C LIMIT determines the maximum number of
- C subintervals in the partition of the given
- C integration interval (A,B), LIMIT.GE.2.
- C If LIMIT.LT.2, the routine will end with IER = 6.
- C
- C LENW - Integer
- C Dimensioning parameter for WORK
- C LENW must be at least LIMIT*4.
- C If LENW.LT.LIMIT*4, the routine will end
- C with IER = 6.
- C
- C LAST - Integer
- C On return, LAST equals the number of
- C subintervals produced in the subdivision process,
- C which determines the significant number of
- C elements actually in the WORK ARRAYS.
- C
- C WORK ARRAYS
- C IWORK - Integer
- C Vector of dimension LIMIT, the first K
- C elements of which contain pointers
- C to the error estimates over the subintervals,
- C such that WORK(LIMIT*3+IWORK(1)), ...,
- C WORK(LIMIT*3+IWORK(K)) form a decreasing
- C sequence with K = LAST if LAST.LE.(LIMIT/2+2),
- C and K = LIMIT+1-LAST otherwise
- C
- C WORK - Real
- C Vector of dimension LENW
- C On return
- C WORK(1), ..., WORK(LAST) contain the left
- C end points of the subintervals in the
- C partition of (A,B),
- C WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
- C the right end points,
- C WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST)
- C contain the integral approximations over
- C the subintervals,
- C WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
- C contain the error estimates.
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QAWSE, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C***END PROLOGUE QAWS
- C
- REAL A,ABSERR,ALFA,B,BETA,EPSABS,EPSREL,F,RESULT,WORK
- INTEGER IER,INTEGR,IWORK,LENW,LIMIT,LVL,L1,L2,L3,NEVAL
- C
- DIMENSION IWORK(*),WORK(*)
- C
- EXTERNAL F
- C
- C CHECK VALIDITY OF LIMIT AND LENW.
- C
- C***FIRST EXECUTABLE STATEMENT QAWS
- IER = 6
- NEVAL = 0
- LAST = 0
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- IF(LIMIT.LT.2.OR.LENW.LT.LIMIT*4) GO TO 10
- C
- C PREPARE CALL FOR QAWSE.
- C
- L1 = LIMIT+1
- L2 = LIMIT+L1
- L3 = LIMIT+L2
- C
- CALL QAWSE(F,A,B,ALFA,BETA,INTEGR,EPSABS,EPSREL,LIMIT,RESULT,
- 1 ABSERR,NEVAL,IER,WORK(1),WORK(L1),WORK(L2),WORK(L3),IWORK,LAST)
- C
- C CALL ERROR HANDLER IF NECESSARY.
- C
- LVL = 0
- 10 IF(IER.EQ.6) LVL = 1
- IF (IER .NE. 0) CALL XERMSG ('SLATEC', 'QAWS',
- + 'ABNORMAL RETURN', IER, LVL)
- RETURN
- END
|