123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 |
- *DECK QAWSE
- SUBROUTINE QAWSE (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
- + LIMIT, RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST,
- + IORD, LAST)
- C***BEGIN PROLOGUE QAWSE
- C***PURPOSE The routine calculates an approximation result to a given
- C definite integral I = Integral of F*W over (A,B),
- C (where W shows a singular behaviour at the end points,
- C see parameter INTEGR).
- C Hopefully satisfying following claim for accuracy
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A2A1
- C***TYPE SINGLE PRECISION (QAWSE-S, DQAWSE-D)
- C***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
- C AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD, QUADPACK,
- C QUADRATURE, SPECIAL-PURPOSE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Integration of functions having algebraico-logarithmic
- C end point singularities
- C Standard fortran subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the driver program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration, B.GT.A
- C If B.LE.A, the routine will end with IER = 6.
- C
- C ALFA - Real
- C Parameter in the WEIGHT function, ALFA.GT.(-1)
- C If ALFA.LE.(-1), the routine will end with
- C IER = 6.
- C
- C BETA - Real
- C Parameter in the WEIGHT function, BETA.GT.(-1)
- C If BETA.LE.(-1), the routine will end with
- C IER = 6.
- C
- C INTEGR - Integer
- C Indicates which WEIGHT function is to be used
- C = 1 (X-A)**ALFA*(B-X)**BETA
- C = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
- C = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
- C = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
- C If INTEGR.LT.1 or INTEGR.GT.4, the routine
- C will end with IER = 6.
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C the routine will end with IER = 6.
- C
- C LIMIT - Integer
- C Gives an upper bound on the number of subintervals
- C in the partition of (A,B), LIMIT.GE.2
- C If LIMIT.LT.2, the routine will end with IER = 6.
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should equal or exceed ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - Integer
- C IER = 0 Normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C IER.GT.0 Abnormal termination of the routine
- C the estimates for the integral and error
- C are less reliable. It is assumed that the
- C requested accuracy has not been achieved.
- C ERROR MESSAGES
- C = 1 Maximum number of subdivisions allowed
- C has been achieved. One can allow more
- C subdivisions by increasing the value of
- C LIMIT. However, if this yields no
- C improvement, it is advised to analyze the
- C integrand in order to determine the
- C integration difficulties which prevent the
- C requested tolerance from being achieved.
- C In case of a jump DISCONTINUITY or a local
- C SINGULARITY of algebraico-logarithmic type
- C at one or more interior points of the
- C integration range, one should proceed by
- C splitting up the interval at these
- C points and calling the integrator on the
- C subranges.
- C = 2 The occurrence of roundoff error is
- C detected, which prevents the requested
- C tolerance from being achieved.
- C = 3 Extremely bad integrand behaviour occurs
- C at some points of the integration
- C interval.
- C = 6 The input is invalid, because
- C B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1), or
- C INTEGR.LT.1 or INTEGR.GT.4, or
- C (EPSABS.LE.0 and
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C or LIMIT.LT.2.
- C RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
- C IORD(1) and LAST are set to zero. ALIST(1)
- C and BLIST(1) are set to A and B
- C respectively.
- C
- C ALIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the left
- C end points of the subintervals in the partition
- C of the given integration range (A,B)
- C
- C BLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the right
- C end points of the subintervals in the partition
- C of the given integration range (A,B)
- C
- C RLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the integral
- C approximations on the subintervals
- C
- C ELIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the moduli of the
- C absolute error estimates on the subintervals
- C
- C IORD - Integer
- C Vector of dimension at least LIMIT, the first K
- C of which are pointers to the error
- C estimates over the subintervals, so that
- C ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
- C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
- C otherwise form a decreasing sequence
- C
- C LAST - Integer
- C Number of subintervals actually produced in
- C the subdivision process
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QC25S, QMOMO, QPSRT, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE QAWSE
- C
- REAL A,ABSERR,ALFA,ALIST,AREA,AREA1,AREA12,
- 1 AREA2,A1,A2,B,BETA,BLIST,B1,B2,CENTRE,
- 2 R1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERRBND,ERRMAX,
- 3 ERROR1,ERRO12,ERROR2,ERRSUM,F,RESAS1,RESAS2,RESULT,RG,RH,RI,RJ,
- 4 RLIST,UFLOW
- INTEGER IER,INTEGR,IORD,IROFF1,IROFF2,K,LAST,
- 1 LIMIT,MAXERR,NEV,NEVAL,NRMAX
- C
- EXTERNAL F
- C
- DIMENSION ALIST(*),BLIST(*),RLIST(*),ELIST(*),
- 1 IORD(*),RI(25),RJ(25),RH(25),RG(25)
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
- C (ALIST(I),BLIST(I))
- C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
- C MAXERR - POINTER TO THE INTERVAL WITH LARGEST
- C ERROR ESTIMATE
- C ERRMAX - ELIST(MAXERR)
- C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
- C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
- C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
- C ABS(RESULT))
- C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
- C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
- C LAST - INDEX FOR SUBDIVISION
- C
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QAWSE
- EPMACH = R1MACH(4)
- UFLOW = R1MACH(1)
- C
- C TEST ON VALIDITY OF PARAMETERS
- C ------------------------------
- C
- IER = 6
- NEVAL = 0
- LAST = 0
- RLIST(1) = 0.0E+00
- ELIST(1) = 0.0E+00
- IORD(1) = 0
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- IF (B.LE.A.OR.(EPSABS.EQ.0.0E+00.AND.
- 1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14)).OR.ALFA.LE.(-0.1E+01)
- 2 .OR.BETA.LE.(-0.1E+01).OR.INTEGR.LT.1.OR.INTEGR.GT.4.OR.
- 3 LIMIT.LT.2) GO TO 999
- IER = 0
- C
- C COMPUTE THE MODIFIED CHEBYSHEV MOMENTS.
- C
- CALL QMOMO(ALFA,BETA,RI,RJ,RG,RH,INTEGR)
- C
- C INTEGRATE OVER THE INTERVALS (A,(A+B)/2)
- C AND ((A+B)/2,B).
- C
- CENTRE = 0.5E+00*(B+A)
- CALL QC25S(F,A,B,A,CENTRE,ALFA,BETA,RI,RJ,RG,RH,AREA1,
- 1 ERROR1,RESAS1,INTEGR,NEV)
- NEVAL = NEV
- CALL QC25S(F,A,B,CENTRE,B,ALFA,BETA,RI,RJ,RG,RH,AREA2,
- 1 ERROR2,RESAS2,INTEGR,NEV)
- LAST = 2
- NEVAL = NEVAL+NEV
- RESULT = AREA1+AREA2
- ABSERR = ERROR1+ERROR2
- C
- C TEST ON ACCURACY.
- C
- ERRBND = MAX(EPSABS,EPSREL*ABS(RESULT))
- C
- C INITIALIZATION
- C --------------
- C
- IF(ERROR2.GT.ERROR1) GO TO 10
- ALIST(1) = A
- ALIST(2) = CENTRE
- BLIST(1) = CENTRE
- BLIST(2) = B
- RLIST(1) = AREA1
- RLIST(2) = AREA2
- ELIST(1) = ERROR1
- ELIST(2) = ERROR2
- GO TO 20
- 10 ALIST(1) = CENTRE
- ALIST(2) = A
- BLIST(1) = B
- BLIST(2) = CENTRE
- RLIST(1) = AREA2
- RLIST(2) = AREA1
- ELIST(1) = ERROR2
- ELIST(2) = ERROR1
- 20 IORD(1) = 1
- IORD(2) = 2
- IF(LIMIT.EQ.2) IER = 1
- IF(ABSERR.LE.ERRBND.OR.IER.EQ.1) GO TO 999
- ERRMAX = ELIST(1)
- MAXERR = 1
- NRMAX = 1
- AREA = RESULT
- ERRSUM = ABSERR
- IROFF1 = 0
- IROFF2 = 0
- C
- C MAIN DO-LOOP
- C ------------
- C
- DO 60 LAST = 3,LIMIT
- C
- C BISECT THE SUBINTERVAL WITH LARGEST ERROR ESTIMATE.
- C
- A1 = ALIST(MAXERR)
- B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
- A2 = B1
- B2 = BLIST(MAXERR)
- C
- CALL QC25S(F,A,B,A1,B1,ALFA,BETA,RI,RJ,RG,RH,AREA1,
- 1 ERROR1,RESAS1,INTEGR,NEV)
- NEVAL = NEVAL+NEV
- CALL QC25S(F,A,B,A2,B2,ALFA,BETA,RI,RJ,RG,RH,AREA2,
- 1 ERROR2,RESAS2,INTEGR,NEV)
- NEVAL = NEVAL+NEV
- C
- C IMPROVE PREVIOUS APPROXIMATIONS INTEGRAL AND ERROR
- C AND TEST FOR ACCURACY.
- C
- AREA12 = AREA1+AREA2
- ERRO12 = ERROR1+ERROR2
- ERRSUM = ERRSUM+ERRO12-ERRMAX
- AREA = AREA+AREA12-RLIST(MAXERR)
- IF(A.EQ.A1.OR.B.EQ.B2) GO TO 30
- IF(RESAS1.EQ.ERROR1.OR.RESAS2.EQ.ERROR2) GO TO 30
- C
- C TEST FOR ROUNDOFF ERROR.
- C
- IF(ABS(RLIST(MAXERR)-AREA12).LT.0.1E-04*ABS(AREA12)
- 1 .AND.ERRO12.GE.0.99E+00*ERRMAX) IROFF1 = IROFF1+1
- IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF2 = IROFF2+1
- 30 RLIST(MAXERR) = AREA1
- RLIST(LAST) = AREA2
- C
- C TEST ON ACCURACY.
- C
- ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
- IF(ERRSUM.LE.ERRBND) GO TO 35
- C
- C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF INTERVAL
- C BISECTIONS EXCEEDS LIMIT.
- C
- IF(LAST.EQ.LIMIT) IER = 1
- C
- C
- C SET ERROR FLAG IN THE CASE OF ROUNDOFF ERROR.
- C
- IF(IROFF1.GE.6.OR.IROFF2.GE.20) IER = 2
- C
- C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
- C AT INTERIOR POINTS OF INTEGRATION RANGE.
- C
- IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)*
- 1 (ABS(A2)+0.1E+04*UFLOW)) IER = 3
- C
- C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
- C
- 35 IF(ERROR2.GT.ERROR1) GO TO 40
- ALIST(LAST) = A2
- BLIST(MAXERR) = B1
- BLIST(LAST) = B2
- ELIST(MAXERR) = ERROR1
- ELIST(LAST) = ERROR2
- GO TO 50
- 40 ALIST(MAXERR) = A2
- ALIST(LAST) = A1
- BLIST(LAST) = B1
- RLIST(MAXERR) = AREA2
- RLIST(LAST) = AREA1
- ELIST(MAXERR) = ERROR2
- ELIST(LAST) = ERROR1
- C
- C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
- C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
- C SUBINTERVAL WITH LARGEST ERROR ESTIMATE (TO BE
- C BISECTED NEXT).
- C
- 50 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
- C ***JUMP OUT OF DO-LOOP
- IF (IER.NE.0.OR.ERRSUM.LE.ERRBND) GO TO 70
- 60 CONTINUE
- C
- C COMPUTE FINAL RESULT.
- C ---------------------
- C
- 70 RESULT = 0.0E+00
- DO 80 K=1,LAST
- RESULT = RESULT+RLIST(K)
- 80 CONTINUE
- ABSERR = ERRSUM
- 999 RETURN
- END
|