qc25f.f 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. *DECK QC25F
  2. SUBROUTINE QC25F (F, A, B, OMEGA, INTEGR, NRMOM, MAXP1, KSAVE,
  3. + RESULT, ABSERR, NEVAL, RESABS, RESASC, MOMCOM, CHEBMO)
  4. C***BEGIN PROLOGUE QC25F
  5. C***PURPOSE To compute the integral I=Integral of F(X) over (A,B)
  6. C Where W(X) = COS(OMEGA*X) Or (WX)=SIN(OMEGA*X)
  7. C and to compute J=Integral of ABS(F) over (A,B). For small
  8. C value of OMEGA or small intervals (A,B) 15-point GAUSS-
  9. C KRONROD Rule used. Otherwise generalized CLENSHAW-CURTIS us
  10. C***LIBRARY SLATEC (QUADPACK)
  11. C***CATEGORY H2A2A2
  12. C***TYPE SINGLE PRECISION (QC25F-S, DQC25F-D)
  13. C***KEYWORDS CLENSHAW-CURTIS METHOD, GAUSS-KRONROD RULES,
  14. C INTEGRATION RULES FOR FUNCTIONS WITH COS OR SIN FACTOR,
  15. C QUADPACK, QUADRATURE
  16. C***AUTHOR Piessens, Robert
  17. C Applied Mathematics and Programming Division
  18. C K. U. Leuven
  19. C de Doncker, Elise
  20. C Applied Mathematics and Programming Division
  21. C K. U. Leuven
  22. C***DESCRIPTION
  23. C
  24. C Integration rules for functions with COS or SIN factor
  25. C Standard fortran subroutine
  26. C Real version
  27. C
  28. C PARAMETERS
  29. C ON ENTRY
  30. C F - Real
  31. C Function subprogram defining the integrand
  32. C function F(X). The actual name for F needs to
  33. C be declared E X T E R N A L in the calling program.
  34. C
  35. C A - Real
  36. C Lower limit of integration
  37. C
  38. C B - Real
  39. C Upper limit of integration
  40. C
  41. C OMEGA - Real
  42. C Parameter in the WEIGHT function
  43. C
  44. C INTEGR - Integer
  45. C Indicates which WEIGHT function is to be used
  46. C INTEGR = 1 W(X) = COS(OMEGA*X)
  47. C INTEGR = 2 W(X) = SIN(OMEGA*X)
  48. C
  49. C NRMOM - Integer
  50. C The length of interval (A,B) is equal to the length
  51. C of the original integration interval divided by
  52. C 2**NRMOM (we suppose that the routine is used in an
  53. C adaptive integration process, otherwise set
  54. C NRMOM = 0). NRMOM must be zero at the first call.
  55. C
  56. C MAXP1 - Integer
  57. C Gives an upper bound on the number of Chebyshev
  58. C moments which can be stored, i.e. for the
  59. C intervals of lengths ABS(BB-AA)*2**(-L),
  60. C L = 0,1,2, ..., MAXP1-2.
  61. C
  62. C KSAVE - Integer
  63. C Key which is one when the moments for the
  64. C current interval have been computed
  65. C
  66. C ON RETURN
  67. C RESULT - Real
  68. C Approximation to the integral I
  69. C
  70. C ABSERR - Real
  71. C Estimate of the modulus of the absolute
  72. C error, which should equal or exceed ABS(I-RESULT)
  73. C
  74. C NEVAL - Integer
  75. C Number of integrand evaluations
  76. C
  77. C RESABS - Real
  78. C Approximation to the integral J
  79. C
  80. C RESASC - Real
  81. C Approximation to the integral of ABS(F-I/(B-A))
  82. C
  83. C ON ENTRY AND RETURN
  84. C MOMCOM - Integer
  85. C For each interval length we need to compute the
  86. C Chebyshev moments. MOMCOM counts the number of
  87. C intervals for which these moments have already been
  88. C computed. If NRMOM.LT.MOMCOM or KSAVE = 1, the
  89. C Chebyshev moments for the interval (A,B) have
  90. C already been computed and stored, otherwise we
  91. C compute them and we increase MOMCOM.
  92. C
  93. C CHEBMO - Real
  94. C Array of dimension at least (MAXP1,25) containing
  95. C the modified Chebyshev moments for the first MOMCOM
  96. C MOMCOM interval lengths
  97. C
  98. C***REFERENCES (NONE)
  99. C***ROUTINES CALLED QCHEB, QK15W, QWGTF, R1MACH, SGTSL
  100. C***REVISION HISTORY (YYMMDD)
  101. C 810101 DATE WRITTEN
  102. C 861211 REVISION DATE from Version 3.2
  103. C 891214 Prologue converted to Version 4.0 format. (BAB)
  104. C***END PROLOGUE QC25F
  105. C
  106. REAL A,ABSERR,AC,AN,AN2,AS,ASAP,ASS,B,CENTR,CHEBMO,
  107. 1 CHEB12,CHEB24,CONC,CONS,COSPAR,D,QWGTF,
  108. 2 D1,R1MACH,D2,ESTC,ESTS,F,FVAL,HLGTH,OFLOW,OMEGA,PARINT,PAR2,
  109. 3 PAR22,P2,P3,P4,RESABS,RESASC,RESC12,RESC24,RESS12,RESS24,
  110. 4 RESULT,SINPAR,V,X
  111. INTEGER I,IERS,INTEGR,ISYM,J,K,KSAVE,M,MAXP1,MOMCOM,NEVAL,
  112. 1 NOEQU,NOEQ1,NRMOM
  113. C
  114. DIMENSION CHEBMO(MAXP1,25),CHEB12(13),CHEB24(25),D(25),D1(25),
  115. 1 D2(25),FVAL(25),V(28),X(11)
  116. C
  117. EXTERNAL F, QWGTF
  118. C
  119. C THE VECTOR X CONTAINS THE VALUES COS(K*PI/24)
  120. C K = 1, ...,11, TO BE USED FOR THE CHEBYSHEV EXPANSION OF F
  121. C
  122. SAVE X
  123. DATA X(1),X(2),X(3),X(4),X(5),X(6),X(7),X(8),X(9),
  124. 1 X(10),X(11)/
  125. 2 0.9914448613738104E+00, 0.9659258262890683E+00,
  126. 3 0.9238795325112868E+00, 0.8660254037844386E+00,
  127. 4 0.7933533402912352E+00, 0.7071067811865475E+00,
  128. 5 0.6087614290087206E+00, 0.5000000000000000E+00,
  129. 6 0.3826834323650898E+00, 0.2588190451025208E+00,
  130. 7 0.1305261922200516E+00/
  131. C
  132. C LIST OF MAJOR VARIABLES
  133. C -----------------------
  134. C
  135. C CENTR - MID POINT OF THE INTEGRATION INTERVAL
  136. C HLGTH - HALF-LENGTH OF THE INTEGRATION INTERVAL
  137. C FVAL - VALUE OF THE FUNCTION F AT THE POINTS
  138. C (B-A)*0.5*COS(K*PI/12) + (B+A)*0.5,
  139. C K = 0, ..., 24
  140. C CHEB12 - COEFFICIENTS OF THE CHEBYSHEV SERIES EXPANSION
  141. C OF DEGREE 12, FOR THE FUNCTION F, IN THE
  142. C INTERVAL (A,B)
  143. C CHEB24 - COEFFICIENTS OF THE CHEBYSHEV SERIES EXPANSION
  144. C OF DEGREE 24, FOR THE FUNCTION F, IN THE
  145. C INTERVAL (A,B)
  146. C RESC12 - APPROXIMATION TO THE INTEGRAL OF
  147. C COS(0.5*(B-A)*OMEGA*X)*F(0.5*(B-A)*X+0.5*(B+A))
  148. C OVER (-1,+1), USING THE CHEBYSHEV SERIES
  149. C EXPANSION OF DEGREE 12
  150. C RESC24 - APPROXIMATION TO THE SAME INTEGRAL, USING THE
  151. C CHEBYSHEV SERIES EXPANSION OF DEGREE 24
  152. C RESS12 - THE ANALOGUE OF RESC12 FOR THE SINE
  153. C RESS24 - THE ANALOGUE OF RESC24 FOR THE SINE
  154. C
  155. C
  156. C MACHINE DEPENDENT CONSTANT
  157. C --------------------------
  158. C
  159. C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
  160. C
  161. C***FIRST EXECUTABLE STATEMENT QC25F
  162. OFLOW = R1MACH(2)
  163. C
  164. CENTR = 0.5E+00*(B+A)
  165. HLGTH = 0.5E+00*(B-A)
  166. PARINT = OMEGA*HLGTH
  167. C
  168. C COMPUTE THE INTEGRAL USING THE 15-POINT GAUSS-KRONROD
  169. C FORMULA IF THE VALUE OF THE PARAMETER IN THE INTEGRAND
  170. C IS SMALL.
  171. C
  172. IF(ABS(PARINT).GT.0.2E+01) GO TO 10
  173. CALL QK15W(F,QWGTF,OMEGA,P2,P3,P4,INTEGR,A,B,RESULT,
  174. 1 ABSERR,RESABS,RESASC)
  175. NEVAL = 15
  176. GO TO 170
  177. C
  178. C COMPUTE THE INTEGRAL USING THE GENERALIZED CLENSHAW-
  179. C CURTIS METHOD.
  180. C
  181. 10 CONC = HLGTH*COS(CENTR*OMEGA)
  182. CONS = HLGTH*SIN(CENTR*OMEGA)
  183. RESASC = OFLOW
  184. NEVAL = 25
  185. C
  186. C CHECK WHETHER THE CHEBYSHEV MOMENTS FOR THIS INTERVAL
  187. C HAVE ALREADY BEEN COMPUTED.
  188. C
  189. IF(NRMOM.LT.MOMCOM.OR.KSAVE.EQ.1) GO TO 120
  190. C
  191. C COMPUTE A NEW SET OF CHEBYSHEV MOMENTS.
  192. C
  193. M = MOMCOM+1
  194. PAR2 = PARINT*PARINT
  195. PAR22 = PAR2+0.2E+01
  196. SINPAR = SIN(PARINT)
  197. COSPAR = COS(PARINT)
  198. C
  199. C COMPUTE THE CHEBYSHEV MOMENTS WITH RESPECT TO COSINE.
  200. C
  201. V(1) = 0.2E+01*SINPAR/PARINT
  202. V(2) = (0.8E+01*COSPAR+(PAR2+PAR2-0.8E+01)*SINPAR/
  203. 1 PARINT)/PAR2
  204. V(3) = (0.32E+02*(PAR2-0.12E+02)*COSPAR+(0.2E+01*
  205. 1 ((PAR2-0.80E+02)*PAR2+0.192E+03)*SINPAR)/
  206. 2 PARINT)/(PAR2*PAR2)
  207. AC = 0.8E+01*COSPAR
  208. AS = 0.24E+02*PARINT*SINPAR
  209. IF(ABS(PARINT).GT.0.24E+02) GO TO 30
  210. C
  211. C COMPUTE THE CHEBYSHEV MOMENTS AS THE
  212. C SOLUTIONS OF A BOUNDARY VALUE PROBLEM WITH 1
  213. C INITIAL VALUE (V(3)) AND 1 END VALUE (COMPUTED
  214. C USING AN ASYMPTOTIC FORMULA).
  215. C
  216. NOEQU = 25
  217. NOEQ1 = NOEQU-1
  218. AN = 0.6E+01
  219. DO 20 K = 1,NOEQ1
  220. AN2 = AN*AN
  221. D(K) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
  222. D2(K) = (AN-0.1E+01)*(AN-0.2E+01)*PAR2
  223. D1(K+1) = (AN+0.3E+01)*(AN+0.4E+01)*PAR2
  224. V(K+3) = AS-(AN2-0.4E+01)*AC
  225. AN = AN+0.2E+01
  226. 20 CONTINUE
  227. AN2 = AN*AN
  228. D(NOEQU) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
  229. V(NOEQU+3) = AS-(AN2-0.4E+01)*AC
  230. V(4) = V(4)-0.56E+02*PAR2*V(3)
  231. ASS = PARINT*SINPAR
  232. ASAP = (((((0.210E+03*PAR2-0.1E+01)*COSPAR-(0.105E+03*PAR2
  233. 1 -0.63E+02)*ASS)/AN2-(0.1E+01-0.15E+02*PAR2)*COSPAR
  234. 2 +0.15E+02*ASS)/AN2-COSPAR+0.3E+01*ASS)/AN2-COSPAR)/AN2
  235. V(NOEQU+3) = V(NOEQU+3)-0.2E+01*ASAP*PAR2*(AN-0.1E+01)*
  236. 1 (AN-0.2E+01)
  237. C
  238. C SOLVE THE TRIDIAGONAL SYSTEM BY MEANS OF GAUSSIAN
  239. C ELIMINATION WITH PARTIAL PIVOTING.
  240. C
  241. CALL SGTSL(NOEQU,D1,D,D2,V(4),IERS)
  242. GO TO 50
  243. C
  244. C COMPUTE THE CHEBYSHEV MOMENTS BY MEANS OF FORWARD
  245. C RECURSION.
  246. C
  247. 30 AN = 0.4E+01
  248. DO 40 I = 4,13
  249. AN2 = AN*AN
  250. V(I) = ((AN2-0.4E+01)*(0.2E+01*(PAR22-AN2-AN2)*V(I-1)-AC)
  251. 1 +AS-PAR2*(AN+0.1E+01)*(AN+0.2E+01)*V(I-2))/
  252. 2 (PAR2*(AN-0.1E+01)*(AN-0.2E+01))
  253. AN = AN+0.2E+01
  254. 40 CONTINUE
  255. 50 DO 60 J = 1,13
  256. CHEBMO(M,2*J-1) = V(J)
  257. 60 CONTINUE
  258. C
  259. C COMPUTE THE CHEBYSHEV MOMENTS WITH RESPECT TO SINE.
  260. C
  261. V(1) = 0.2E+01*(SINPAR-PARINT*COSPAR)/PAR2
  262. V(2) = (0.18E+02-0.48E+02/PAR2)*SINPAR/PAR2
  263. 1 +(-0.2E+01+0.48E+02/PAR2)*COSPAR/PARINT
  264. AC = -0.24E+02*PARINT*COSPAR
  265. AS = -0.8E+01*SINPAR
  266. IF(ABS(PARINT).GT.0.24E+02) GO TO 80
  267. C
  268. C COMPUTE THE CHEBYSHEV MOMENTS AS THE
  269. C SOLUTIONS OF A BOUNDARY VALUE PROBLEM WITH 1
  270. C INITIAL VALUE (V(2)) AND 1 END VALUE (COMPUTED
  271. C USING AN ASYMPTOTIC FORMULA).
  272. C
  273. AN = 0.5E+01
  274. DO 70 K = 1,NOEQ1
  275. AN2 = AN*AN
  276. D(K) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
  277. D2(K) = (AN-0.1E+01)*(AN-0.2E+01)*PAR2
  278. D1(K+1) = (AN+0.3E+01)*(AN+0.4E+01)*PAR2
  279. V(K+2) = AC+(AN2-0.4E+01)*AS
  280. AN = AN+0.2E+01
  281. 70 CONTINUE
  282. AN2 = AN*AN
  283. D(NOEQU) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
  284. V(NOEQU+2) = AC+(AN2-0.4E+01)*AS
  285. V(3) = V(3)-0.42E+02*PAR2*V(2)
  286. ASS = PARINT*COSPAR
  287. ASAP = (((((0.105E+03*PAR2-0.63E+02)*ASS+(0.210E+03*PAR2
  288. 1 -0.1E+01)*SINPAR)/AN2+(0.15E+02*PAR2-0.1E+01)*SINPAR-
  289. 2 0.15E+02*ASS)/AN2-0.3E+01*ASS-SINPAR)/AN2-SINPAR)/AN2
  290. V(NOEQU+2) = V(NOEQU+2)-0.2E+01*ASAP*PAR2*(AN-0.1E+01)
  291. 1 *(AN-0.2E+01)
  292. C
  293. C SOLVE THE TRIDIAGONAL SYSTEM BY MEANS OF GAUSSIAN
  294. C ELIMINATION WITH PARTIAL PIVOTING.
  295. C
  296. CALL SGTSL(NOEQU,D1,D,D2,V(3),IERS)
  297. GO TO 100
  298. C
  299. C COMPUTE THE CHEBYSHEV MOMENTS BY MEANS OF
  300. C FORWARD RECURSION.
  301. C
  302. 80 AN = 0.3E+01
  303. DO 90 I = 3,12
  304. AN2 = AN*AN
  305. V(I) = ((AN2-0.4E+01)*(0.2E+01*(PAR22-AN2-AN2)*V(I-1)+AS)
  306. 1 +AC-PAR2*(AN+0.1E+01)*(AN+0.2E+01)*V(I-2))
  307. 2 /(PAR2*(AN-0.1E+01)*(AN-0.2E+01))
  308. AN = AN+0.2E+01
  309. 90 CONTINUE
  310. 100 DO 110 J = 1,12
  311. CHEBMO(M,2*J) = V(J)
  312. 110 CONTINUE
  313. 120 IF (NRMOM.LT.MOMCOM) M = NRMOM+1
  314. IF (MOMCOM.LT.MAXP1-1.AND.NRMOM.GE.MOMCOM) MOMCOM = MOMCOM+1
  315. C
  316. C COMPUTE THE COEFFICIENTS OF THE CHEBYSHEV EXPANSIONS
  317. C OF DEGREES 12 AND 24 OF THE FUNCTION F.
  318. C
  319. FVAL(1) = 0.5E+00*F(CENTR+HLGTH)
  320. FVAL(13) = F(CENTR)
  321. FVAL(25) = 0.5E+00*F(CENTR-HLGTH)
  322. DO 130 I = 2,12
  323. ISYM = 26-I
  324. FVAL(I) = F(HLGTH*X(I-1)+CENTR)
  325. FVAL(ISYM) = F(CENTR-HLGTH*X(I-1))
  326. 130 CONTINUE
  327. CALL QCHEB(X,FVAL,CHEB12,CHEB24)
  328. C
  329. C COMPUTE THE INTEGRAL AND ERROR ESTIMATES.
  330. C
  331. RESC12 = CHEB12(13)*CHEBMO(M,13)
  332. RESS12 = 0.0E+00
  333. K = 11
  334. DO 140 J = 1,6
  335. RESC12 = RESC12+CHEB12(K)*CHEBMO(M,K)
  336. RESS12 = RESS12+CHEB12(K+1)*CHEBMO(M,K+1)
  337. K = K-2
  338. 140 CONTINUE
  339. RESC24 = CHEB24(25)*CHEBMO(M,25)
  340. RESS24 = 0.0E+00
  341. RESABS = ABS(CHEB24(25))
  342. K = 23
  343. DO 150 J = 1,12
  344. RESC24 = RESC24+CHEB24(K)*CHEBMO(M,K)
  345. RESS24 = RESS24+CHEB24(K+1)*CHEBMO(M,K+1)
  346. RESABS = ABS(CHEB24(K))+ABS(CHEB24(K+1))
  347. K = K-2
  348. 150 CONTINUE
  349. ESTC = ABS(RESC24-RESC12)
  350. ESTS = ABS(RESS24-RESS12)
  351. RESABS = RESABS*ABS(HLGTH)
  352. IF(INTEGR.EQ.2) GO TO 160
  353. RESULT = CONC*RESC24-CONS*RESS24
  354. ABSERR = ABS(CONC*ESTC)+ABS(CONS*ESTS)
  355. GO TO 170
  356. 160 RESULT = CONC*RESS24+CONS*RESC24
  357. ABSERR = ABS(CONC*ESTS)+ABS(CONS*ESTC)
  358. 170 RETURN
  359. END