123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- *DECK QCHEB
- SUBROUTINE QCHEB (X, FVAL, CHEB12, CHEB24)
- C***BEGIN PROLOGUE QCHEB
- C***SUBSIDIARY
- C***PURPOSE This routine computes the CHEBYSHEV series expansion
- C of degrees 12 and 24 of a function using A
- C FAST FOURIER TRANSFORM METHOD
- C F(X) = SUM(K=1,..,13) (CHEB12(K)*T(K-1,X)),
- C F(X) = SUM(K=1,..,25) (CHEB24(K)*T(K-1,X)),
- C Where T(K,X) is the CHEBYSHEV POLYNOMIAL OF DEGREE K.
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (QCHEB-S, DQCHEB-D)
- C***KEYWORDS CHEBYSHEV SERIES EXPANSION, FAST FOURIER TRANSFORM
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Chebyshev Series Expansion
- C Standard Fortran Subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C X - Real
- C Vector of dimension 11 containing the
- C Values COS(K*PI/24), K = 1, ..., 11
- C
- C FVAL - Real
- C Vector of dimension 25 containing the
- C function values at the points
- C (B+A+(B-A)*COS(K*PI/24))/2, K = 0, ...,24,
- C where (A,B) is the approximation interval.
- C FVAL(1) and FVAL(25) are divided by two
- C (these values are destroyed at output).
- C
- C ON RETURN
- C CHEB12 - Real
- C Vector of dimension 13 containing the
- C CHEBYSHEV coefficients for degree 12
- C
- C CHEB24 - Real
- C Vector of dimension 25 containing the
- C CHEBYSHEV Coefficients for degree 24
- C
- C***SEE ALSO QC25C, QC25F, QC25S
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 810101 DATE WRITTEN
- C 830518 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900328 Added TYPE section. (WRB)
- C***END PROLOGUE QCHEB
- C
- REAL ALAM,ALAM1,ALAM2,CHEB12,CHEB24,
- 1 FVAL,PART1,PART2,PART3,V,X
- INTEGER I,J
- C
- DIMENSION CHEB12(13),CHEB24(25),FVAL(25),V(12),X(11)
- C
- C***FIRST EXECUTABLE STATEMENT QCHEB
- DO 10 I=1,12
- J = 26-I
- V(I) = FVAL(I)-FVAL(J)
- FVAL(I) = FVAL(I)+FVAL(J)
- 10 CONTINUE
- ALAM1 = V(1)-V(9)
- ALAM2 = X(6)*(V(3)-V(7)-V(11))
- CHEB12(4) = ALAM1+ALAM2
- CHEB12(10) = ALAM1-ALAM2
- ALAM1 = V(2)-V(8)-V(10)
- ALAM2 = V(4)-V(6)-V(12)
- ALAM = X(3)*ALAM1+X(9)*ALAM2
- CHEB24(4) = CHEB12(4)+ALAM
- CHEB24(22) = CHEB12(4)-ALAM
- ALAM = X(9)*ALAM1-X(3)*ALAM2
- CHEB24(10) = CHEB12(10)+ALAM
- CHEB24(16) = CHEB12(10)-ALAM
- PART1 = X(4)*V(5)
- PART2 = X(8)*V(9)
- PART3 = X(6)*V(7)
- ALAM1 = V(1)+PART1+PART2
- ALAM2 = X(2)*V(3)+PART3+X(10)*V(11)
- CHEB12(2) = ALAM1+ALAM2
- CHEB12(12) = ALAM1-ALAM2
- ALAM = X(1)*V(2)+X(3)*V(4)+X(5)*V(6)+X(7)*V(8)
- 1 +X(9)*V(10)+X(11)*V(12)
- CHEB24(2) = CHEB12(2)+ALAM
- CHEB24(24) = CHEB12(2)-ALAM
- ALAM = X(11)*V(2)-X(9)*V(4)+X(7)*V(6)-X(5)*V(8)
- 1 +X(3)*V(10)-X(1)*V(12)
- CHEB24(12) = CHEB12(12)+ALAM
- CHEB24(14) = CHEB12(12)-ALAM
- ALAM1 = V(1)-PART1+PART2
- ALAM2 = X(10)*V(3)-PART3+X(2)*V(11)
- CHEB12(6) = ALAM1+ALAM2
- CHEB12(8) = ALAM1-ALAM2
- ALAM = X(5)*V(2)-X(9)*V(4)-X(1)*V(6)
- 1 -X(11)*V(8)+X(3)*V(10)+X(7)*V(12)
- CHEB24(6) = CHEB12(6)+ALAM
- CHEB24(20) = CHEB12(6)-ALAM
- ALAM = X(7)*V(2)-X(3)*V(4)-X(11)*V(6)+X(1)*V(8)
- 1 -X(9)*V(10)-X(5)*V(12)
- CHEB24(8) = CHEB12(8)+ALAM
- CHEB24(18) = CHEB12(8)-ALAM
- DO 20 I=1,6
- J = 14-I
- V(I) = FVAL(I)-FVAL(J)
- FVAL(I) = FVAL(I)+FVAL(J)
- 20 CONTINUE
- ALAM1 = V(1)+X(8)*V(5)
- ALAM2 = X(4)*V(3)
- CHEB12(3) = ALAM1+ALAM2
- CHEB12(11) = ALAM1-ALAM2
- CHEB12(7) = V(1)-V(5)
- ALAM = X(2)*V(2)+X(6)*V(4)+X(10)*V(6)
- CHEB24(3) = CHEB12(3)+ALAM
- CHEB24(23) = CHEB12(3)-ALAM
- ALAM = X(6)*(V(2)-V(4)-V(6))
- CHEB24(7) = CHEB12(7)+ALAM
- CHEB24(19) = CHEB12(7)-ALAM
- ALAM = X(10)*V(2)-X(6)*V(4)+X(2)*V(6)
- CHEB24(11) = CHEB12(11)+ALAM
- CHEB24(15) = CHEB12(11)-ALAM
- DO 30 I=1,3
- J = 8-I
- V(I) = FVAL(I)-FVAL(J)
- FVAL(I) = FVAL(I)+FVAL(J)
- 30 CONTINUE
- CHEB12(5) = V(1)+X(8)*V(3)
- CHEB12(9) = FVAL(1)-X(8)*FVAL(3)
- ALAM = X(4)*V(2)
- CHEB24(5) = CHEB12(5)+ALAM
- CHEB24(21) = CHEB12(5)-ALAM
- ALAM = X(8)*FVAL(2)-FVAL(4)
- CHEB24(9) = CHEB12(9)+ALAM
- CHEB24(17) = CHEB12(9)-ALAM
- CHEB12(1) = FVAL(1)+FVAL(3)
- ALAM = FVAL(2)+FVAL(4)
- CHEB24(1) = CHEB12(1)+ALAM
- CHEB24(25) = CHEB12(1)-ALAM
- CHEB12(13) = V(1)-V(3)
- CHEB24(13) = CHEB12(13)
- ALAM = 0.1E+01/0.6E+01
- DO 40 I=2,12
- CHEB12(I) = CHEB12(I)*ALAM
- 40 CONTINUE
- ALAM = 0.5E+00*ALAM
- CHEB12(1) = CHEB12(1)*ALAM
- CHEB12(13) = CHEB12(13)*ALAM
- DO 50 I=2,24
- CHEB24(I) = CHEB24(I)*ALAM
- 50 CONTINUE
- CHEB24(1) = 0.5E+00*ALAM*CHEB24(1)
- CHEB24(25) = 0.5E+00*ALAM*CHEB24(25)
- RETURN
- END
|