qk15i.f 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. *DECK QK15I
  2. SUBROUTINE QK15I (F, BOUN, INF, A, B, RESULT, ABSERR, RESABS,
  3. + RESASC)
  4. C***BEGIN PROLOGUE QK15I
  5. C***PURPOSE The original (infinite integration range is mapped
  6. C onto the interval (0,1) and (A,B) is a part of (0,1).
  7. C it is the purpose to compute
  8. C I = Integral of transformed integrand over (A,B),
  9. C J = Integral of ABS(Transformed Integrand) over (A,B).
  10. C***LIBRARY SLATEC (QUADPACK)
  11. C***CATEGORY H2A3A2, H2A4A2
  12. C***TYPE SINGLE PRECISION (QK15I-S, DQK15I-D)
  13. C***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
  14. C***AUTHOR Piessens, Robert
  15. C Applied Mathematics and Programming Division
  16. C K. U. Leuven
  17. C de Doncker, Elise
  18. C Applied Mathematics and Programming Division
  19. C K. U. Leuven
  20. C***DESCRIPTION
  21. C
  22. C Integration Rule
  23. C Standard Fortran subroutine
  24. C Real version
  25. C
  26. C PARAMETERS
  27. C ON ENTRY
  28. C F - Real
  29. C Function subprogram defining the integrand
  30. C FUNCTION F(X). The actual name for F needs to be
  31. C Declared E X T E R N A L in the calling program.
  32. C
  33. C BOUN - Real
  34. C Finite bound of original integration
  35. C Range (SET TO ZERO IF INF = +2)
  36. C
  37. C INF - Integer
  38. C If INF = -1, the original interval is
  39. C (-INFINITY,BOUND),
  40. C If INF = +1, the original interval is
  41. C (BOUND,+INFINITY),
  42. C If INF = +2, the original interval is
  43. C (-INFINITY,+INFINITY) AND
  44. C The integral is computed as the sum of two
  45. C integrals, one over (-INFINITY,0) and one over
  46. C (0,+INFINITY).
  47. C
  48. C A - Real
  49. C Lower limit for integration over subrange
  50. C of (0,1)
  51. C
  52. C B - Real
  53. C Upper limit for integration over subrange
  54. C of (0,1)
  55. C
  56. C ON RETURN
  57. C RESULT - Real
  58. C Approximation to the integral I
  59. C Result is computed by applying the 15-POINT
  60. C KRONROD RULE(RESK) obtained by optimal addition
  61. C of abscissae to the 7-POINT GAUSS RULE(RESG).
  62. C
  63. C ABSERR - Real
  64. C Estimate of the modulus of the absolute error,
  65. C WHICH SHOULD EQUAL or EXCEED ABS(I-RESULT)
  66. C
  67. C RESABS - Real
  68. C Approximation to the integral J
  69. C
  70. C RESASC - Real
  71. C Approximation to the integral of
  72. C ABS((TRANSFORMED INTEGRAND)-I/(B-A)) over (A,B)
  73. C
  74. C***REFERENCES (NONE)
  75. C***ROUTINES CALLED R1MACH
  76. C***REVISION HISTORY (YYMMDD)
  77. C 800101 DATE WRITTEN
  78. C 890531 Changed all specific intrinsics to generic. (WRB)
  79. C 890531 REVISION DATE from Version 3.2
  80. C 891214 Prologue converted to Version 4.0 format. (BAB)
  81. C***END PROLOGUE QK15I
  82. C
  83. REAL A,ABSC,ABSC1,ABSC2,ABSERR,B,BOUN,CENTR,
  84. 1 DINF,R1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,
  85. 2 FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,TABSC1,TABSC2,
  86. 3 UFLOW,WG,WGK,XGK
  87. INTEGER INF,J
  88. EXTERNAL F
  89. C
  90. DIMENSION FV1(7),FV2(7),XGK(8),WGK(8),WG(8)
  91. C
  92. C THE ABSCISSAE AND WEIGHTS ARE SUPPLIED FOR THE INTERVAL
  93. C (-1,1). BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND
  94. C THEIR CORRESPONDING WEIGHTS ARE GIVEN.
  95. C
  96. C XGK - ABSCISSAE OF THE 15-POINT KRONROD RULE
  97. C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
  98. C GAUSS RULE
  99. C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
  100. C ADDED TO THE 7-POINT GAUSS RULE
  101. C
  102. C WGK - WEIGHTS OF THE 15-POINT KRONROD RULE
  103. C
  104. C WG - WEIGHTS OF THE 7-POINT GAUSS RULE, CORRESPONDING
  105. C TO THE ABSCISSAE XGK(2), XGK(4), ...
  106. C WG(1), WG(3), ... ARE SET TO ZERO.
  107. C
  108. SAVE XGK, WGK, WG
  109. DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),
  110. 1 XGK(8)/
  111. 2 0.9914553711208126E+00, 0.9491079123427585E+00,
  112. 3 0.8648644233597691E+00, 0.7415311855993944E+00,
  113. 4 0.5860872354676911E+00, 0.4058451513773972E+00,
  114. 5 0.2077849550078985E+00, 0.0000000000000000E+00/
  115. C
  116. DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),
  117. 1 WGK(8)/
  118. 2 0.2293532201052922E-01, 0.6309209262997855E-01,
  119. 3 0.1047900103222502E+00, 0.1406532597155259E+00,
  120. 4 0.1690047266392679E+00, 0.1903505780647854E+00,
  121. 5 0.2044329400752989E+00, 0.2094821410847278E+00/
  122. C
  123. DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8)/
  124. 1 0.0000000000000000E+00, 0.1294849661688697E+00,
  125. 2 0.0000000000000000E+00, 0.2797053914892767E+00,
  126. 3 0.0000000000000000E+00, 0.3818300505051189E+00,
  127. 4 0.0000000000000000E+00, 0.4179591836734694E+00/
  128. C
  129. C
  130. C LIST OF MAJOR VARIABLES
  131. C -----------------------
  132. C
  133. C CENTR - MID POINT OF THE INTERVAL
  134. C HLGTH - HALF-LENGTH OF THE INTERVAL
  135. C ABSC* - ABSCISSA
  136. C TABSC* - TRANSFORMED ABSCISSA
  137. C FVAL* - FUNCTION VALUE
  138. C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
  139. C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
  140. C RESKH - APPROXIMATION TO THE MEAN VALUE OF THE TRANSFORMED
  141. C INTEGRAND OVER (A,B), I.E. TO I/(B-A)
  142. C
  143. C MACHINE DEPENDENT CONSTANTS
  144. C ---------------------------
  145. C
  146. C EPMACH IS THE LARGEST RELATIVE SPACING.
  147. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
  148. C
  149. C***FIRST EXECUTABLE STATEMENT QK15I
  150. EPMACH = R1MACH(4)
  151. UFLOW = R1MACH(1)
  152. DINF = MIN(1,INF)
  153. C
  154. CENTR = 0.5E+00*(A+B)
  155. HLGTH = 0.5E+00*(B-A)
  156. TABSC1 = BOUN+DINF*(0.1E+01-CENTR)/CENTR
  157. FVAL1 = F(TABSC1)
  158. IF(INF.EQ.2) FVAL1 = FVAL1+F(-TABSC1)
  159. FC = (FVAL1/CENTR)/CENTR
  160. C
  161. C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO
  162. C THE INTEGRAL, AND ESTIMATE THE ERROR.
  163. C
  164. RESG = WG(8)*FC
  165. RESK = WGK(8)*FC
  166. RESABS = ABS(RESK)
  167. DO 10 J=1,7
  168. ABSC = HLGTH*XGK(J)
  169. ABSC1 = CENTR-ABSC
  170. ABSC2 = CENTR+ABSC
  171. TABSC1 = BOUN+DINF*(0.1E+01-ABSC1)/ABSC1
  172. TABSC2 = BOUN+DINF*(0.1E+01-ABSC2)/ABSC2
  173. FVAL1 = F(TABSC1)
  174. FVAL2 = F(TABSC2)
  175. IF(INF.EQ.2) FVAL1 = FVAL1+F(-TABSC1)
  176. IF(INF.EQ.2) FVAL2 = FVAL2+F(-TABSC2)
  177. FVAL1 = (FVAL1/ABSC1)/ABSC1
  178. FVAL2 = (FVAL2/ABSC2)/ABSC2
  179. FV1(J) = FVAL1
  180. FV2(J) = FVAL2
  181. FSUM = FVAL1+FVAL2
  182. RESG = RESG+WG(J)*FSUM
  183. RESK = RESK+WGK(J)*FSUM
  184. RESABS = RESABS+WGK(J)*(ABS(FVAL1)+ABS(FVAL2))
  185. 10 CONTINUE
  186. RESKH = RESK*0.5E+00
  187. RESASC = WGK(8)*ABS(FC-RESKH)
  188. DO 20 J=1,7
  189. RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
  190. 20 CONTINUE
  191. RESULT = RESK*HLGTH
  192. RESASC = RESASC*HLGTH
  193. RESABS = RESABS*HLGTH
  194. ABSERR = ABS((RESK-RESG)*HLGTH)
  195. IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.E0) ABSERR = RESASC*
  196. 1 MIN(0.1E+01,(0.2E+03*ABSERR/RESASC)**1.5E+00)
  197. IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
  198. 1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
  199. RETURN
  200. END