123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- *DECK QK15I
- SUBROUTINE QK15I (F, BOUN, INF, A, B, RESULT, ABSERR, RESABS,
- + RESASC)
- C***BEGIN PROLOGUE QK15I
- C***PURPOSE The original (infinite integration range is mapped
- C onto the interval (0,1) and (A,B) is a part of (0,1).
- C it is the purpose to compute
- C I = Integral of transformed integrand over (A,B),
- C J = Integral of ABS(Transformed Integrand) over (A,B).
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A3A2, H2A4A2
- C***TYPE SINGLE PRECISION (QK15I-S, DQK15I-D)
- C***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Integration Rule
- C Standard Fortran subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C FUNCTION F(X). The actual name for F needs to be
- C Declared E X T E R N A L in the calling program.
- C
- C BOUN - Real
- C Finite bound of original integration
- C Range (SET TO ZERO IF INF = +2)
- C
- C INF - Integer
- C If INF = -1, the original interval is
- C (-INFINITY,BOUND),
- C If INF = +1, the original interval is
- C (BOUND,+INFINITY),
- C If INF = +2, the original interval is
- C (-INFINITY,+INFINITY) AND
- C The integral is computed as the sum of two
- C integrals, one over (-INFINITY,0) and one over
- C (0,+INFINITY).
- C
- C A - Real
- C Lower limit for integration over subrange
- C of (0,1)
- C
- C B - Real
- C Upper limit for integration over subrange
- C of (0,1)
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral I
- C Result is computed by applying the 15-POINT
- C KRONROD RULE(RESK) obtained by optimal addition
- C of abscissae to the 7-POINT GAUSS RULE(RESG).
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C WHICH SHOULD EQUAL or EXCEED ABS(I-RESULT)
- C
- C RESABS - Real
- C Approximation to the integral J
- C
- C RESASC - Real
- C Approximation to the integral of
- C ABS((TRANSFORMED INTEGRAND)-I/(B-A)) over (A,B)
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE QK15I
- C
- REAL A,ABSC,ABSC1,ABSC2,ABSERR,B,BOUN,CENTR,
- 1 DINF,R1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,
- 2 FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,TABSC1,TABSC2,
- 3 UFLOW,WG,WGK,XGK
- INTEGER INF,J
- EXTERNAL F
- C
- DIMENSION FV1(7),FV2(7),XGK(8),WGK(8),WG(8)
- C
- C THE ABSCISSAE AND WEIGHTS ARE SUPPLIED FOR THE INTERVAL
- C (-1,1). BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND
- C THEIR CORRESPONDING WEIGHTS ARE GIVEN.
- C
- C XGK - ABSCISSAE OF THE 15-POINT KRONROD RULE
- C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
- C GAUSS RULE
- C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
- C ADDED TO THE 7-POINT GAUSS RULE
- C
- C WGK - WEIGHTS OF THE 15-POINT KRONROD RULE
- C
- C WG - WEIGHTS OF THE 7-POINT GAUSS RULE, CORRESPONDING
- C TO THE ABSCISSAE XGK(2), XGK(4), ...
- C WG(1), WG(3), ... ARE SET TO ZERO.
- C
- SAVE XGK, WGK, WG
- DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),
- 1 XGK(8)/
- 2 0.9914553711208126E+00, 0.9491079123427585E+00,
- 3 0.8648644233597691E+00, 0.7415311855993944E+00,
- 4 0.5860872354676911E+00, 0.4058451513773972E+00,
- 5 0.2077849550078985E+00, 0.0000000000000000E+00/
- C
- DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),
- 1 WGK(8)/
- 2 0.2293532201052922E-01, 0.6309209262997855E-01,
- 3 0.1047900103222502E+00, 0.1406532597155259E+00,
- 4 0.1690047266392679E+00, 0.1903505780647854E+00,
- 5 0.2044329400752989E+00, 0.2094821410847278E+00/
- C
- DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8)/
- 1 0.0000000000000000E+00, 0.1294849661688697E+00,
- 2 0.0000000000000000E+00, 0.2797053914892767E+00,
- 3 0.0000000000000000E+00, 0.3818300505051189E+00,
- 4 0.0000000000000000E+00, 0.4179591836734694E+00/
- C
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C CENTR - MID POINT OF THE INTERVAL
- C HLGTH - HALF-LENGTH OF THE INTERVAL
- C ABSC* - ABSCISSA
- C TABSC* - TRANSFORMED ABSCISSA
- C FVAL* - FUNCTION VALUE
- C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
- C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
- C RESKH - APPROXIMATION TO THE MEAN VALUE OF THE TRANSFORMED
- C INTEGRAND OVER (A,B), I.E. TO I/(B-A)
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QK15I
- EPMACH = R1MACH(4)
- UFLOW = R1MACH(1)
- DINF = MIN(1,INF)
- C
- CENTR = 0.5E+00*(A+B)
- HLGTH = 0.5E+00*(B-A)
- TABSC1 = BOUN+DINF*(0.1E+01-CENTR)/CENTR
- FVAL1 = F(TABSC1)
- IF(INF.EQ.2) FVAL1 = FVAL1+F(-TABSC1)
- FC = (FVAL1/CENTR)/CENTR
- C
- C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO
- C THE INTEGRAL, AND ESTIMATE THE ERROR.
- C
- RESG = WG(8)*FC
- RESK = WGK(8)*FC
- RESABS = ABS(RESK)
- DO 10 J=1,7
- ABSC = HLGTH*XGK(J)
- ABSC1 = CENTR-ABSC
- ABSC2 = CENTR+ABSC
- TABSC1 = BOUN+DINF*(0.1E+01-ABSC1)/ABSC1
- TABSC2 = BOUN+DINF*(0.1E+01-ABSC2)/ABSC2
- FVAL1 = F(TABSC1)
- FVAL2 = F(TABSC2)
- IF(INF.EQ.2) FVAL1 = FVAL1+F(-TABSC1)
- IF(INF.EQ.2) FVAL2 = FVAL2+F(-TABSC2)
- FVAL1 = (FVAL1/ABSC1)/ABSC1
- FVAL2 = (FVAL2/ABSC2)/ABSC2
- FV1(J) = FVAL1
- FV2(J) = FVAL2
- FSUM = FVAL1+FVAL2
- RESG = RESG+WG(J)*FSUM
- RESK = RESK+WGK(J)*FSUM
- RESABS = RESABS+WGK(J)*(ABS(FVAL1)+ABS(FVAL2))
- 10 CONTINUE
- RESKH = RESK*0.5E+00
- RESASC = WGK(8)*ABS(FC-RESKH)
- DO 20 J=1,7
- RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
- 20 CONTINUE
- RESULT = RESK*HLGTH
- RESASC = RESASC*HLGTH
- RESABS = RESABS*HLGTH
- ABSERR = ABS((RESK-RESG)*HLGTH)
- IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.E0) ABSERR = RESASC*
- 1 MIN(0.1E+01,(0.2E+03*ABSERR/RESASC)**1.5E+00)
- IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
- 1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
- RETURN
- END
|