qk51.f 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. *DECK QK51
  2. SUBROUTINE QK51 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
  3. C***BEGIN PROLOGUE QK51
  4. C***PURPOSE To compute I = Integral of F over (A,B) with error
  5. C estimate
  6. C J = Integral of ABS(F) over (A,B)
  7. C***LIBRARY SLATEC (QUADPACK)
  8. C***CATEGORY H2A1A2
  9. C***TYPE SINGLE PRECISION (QK51-S, DQK51-D)
  10. C***KEYWORDS 51-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
  11. C***AUTHOR Piessens, Robert
  12. C Applied Mathematics and Programming Division
  13. C K. U. Leuven
  14. C de Doncker, Elise
  15. C Applied Mathematics and Programming Division
  16. C K. U. Leuven
  17. C***DESCRIPTION
  18. C
  19. C Integration rules
  20. C Standard fortran subroutine
  21. C Real version
  22. C
  23. C PARAMETERS
  24. C ON ENTRY
  25. C F - Real
  26. C Function subroutine defining the integrand
  27. C function F(X). The actual name for F needs to be
  28. C declared E X T E R N A L in the calling program.
  29. C
  30. C A - Real
  31. C Lower limit of integration
  32. C
  33. C B - Real
  34. C Upper limit of integration
  35. C
  36. C ON RETURN
  37. C RESULT - Real
  38. C Approximation to the integral I
  39. C RESULT is computed by applying the 51-point
  40. C Kronrod rule (RESK) obtained by optimal addition
  41. C of abscissae to the 25-point Gauss rule (RESG).
  42. C
  43. C ABSERR - Real
  44. C Estimate of the modulus of the absolute error,
  45. C which should not exceed ABS(I-RESULT)
  46. C
  47. C RESABS - Real
  48. C Approximation to the integral J
  49. C
  50. C RESASC - Real
  51. C Approximation to the integral of ABS(F-I/(B-A))
  52. C over (A,B)
  53. C
  54. C***REFERENCES (NONE)
  55. C***ROUTINES CALLED R1MACH
  56. C***REVISION HISTORY (YYMMDD)
  57. C 800101 DATE WRITTEN
  58. C 890531 Changed all specific intrinsics to generic. (WRB)
  59. C 890531 REVISION DATE from Version 3.2
  60. C 891214 Prologue converted to Version 4.0 format. (BAB)
  61. C***END PROLOGUE QK51
  62. C
  63. REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
  64. 1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,
  65. 2 WG,WGK,XGK
  66. INTEGER J,JTW,JTWM1
  67. EXTERNAL F
  68. C
  69. DIMENSION FV1(25),FV2(25),XGK(26),WGK(26),WG(13)
  70. C
  71. C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
  72. C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
  73. C CORRESPONDING WEIGHTS ARE GIVEN.
  74. C
  75. C XGK - ABSCISSAE OF THE 51-POINT KRONROD RULE
  76. C XGK(2), XGK(4), ... ABSCISSAE OF THE 25-POINT
  77. C GAUSS RULE
  78. C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
  79. C ADDED TO THE 25-POINT GAUSS RULE
  80. C
  81. C WGK - WEIGHTS OF THE 51-POINT KRONROD RULE
  82. C
  83. C WG - WEIGHTS OF THE 25-POINT GAUSS RULE
  84. C
  85. SAVE XGK, WGK, WG
  86. DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8),
  87. 1 XGK(9),XGK(10),XGK(11),XGK(12),XGK(13),XGK(14)/
  88. 2 0.9992621049926098E+00, 0.9955569697904981E+00,
  89. 3 0.9880357945340772E+00, 0.9766639214595175E+00,
  90. 4 0.9616149864258425E+00, 0.9429745712289743E+00,
  91. 5 0.9207471152817016E+00, 0.8949919978782754E+00,
  92. 6 0.8658470652932756E+00, 0.8334426287608340E+00,
  93. 7 0.7978737979985001E+00, 0.7592592630373576E+00,
  94. 8 0.7177664068130844E+00, 0.6735663684734684E+00/
  95. DATA XGK(15),XGK(16),XGK(17),XGK(18),XGK(19),XGK(20),XGK(21),
  96. 1 XGK(22),XGK(23),XGK(24),XGK(25),XGK(26)/
  97. 2 0.6268100990103174E+00, 0.5776629302412230E+00,
  98. 3 0.5263252843347192E+00, 0.4730027314457150E+00,
  99. 4 0.4178853821930377E+00, 0.3611723058093878E+00,
  100. 5 0.3030895389311078E+00, 0.2438668837209884E+00,
  101. 6 0.1837189394210489E+00, 0.1228646926107104E+00,
  102. 7 0.6154448300568508E-01, 0.0E+00 /
  103. DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8),
  104. 1 WGK(9),WGK(10),WGK(11),WGK(12),WGK(13),WGK(14)/
  105. 2 0.1987383892330316E-02, 0.5561932135356714E-02,
  106. 3 0.9473973386174152E-02, 0.1323622919557167E-01,
  107. 4 0.1684781770912830E-01, 0.2043537114588284E-01,
  108. 5 0.2400994560695322E-01, 0.2747531758785174E-01,
  109. 6 0.3079230016738749E-01, 0.3400213027432934E-01,
  110. 7 0.3711627148341554E-01, 0.4008382550403238E-01,
  111. 8 0.4287284502017005E-01, 0.4550291304992179E-01/
  112. DATA WGK(15),WGK(16),WGK(17),WGK(18),WGK(19),WGK(20),WGK(21)
  113. 1 ,WGK(22),WGK(23),WGK(24),WGK(25),WGK(26)/
  114. 2 0.4798253713883671E-01, 0.5027767908071567E-01,
  115. 3 0.5236288580640748E-01, 0.5425112988854549E-01,
  116. 4 0.5595081122041232E-01, 0.5743711636156783E-01,
  117. 5 0.5868968002239421E-01, 0.5972034032417406E-01,
  118. 6 0.6053945537604586E-01, 0.6112850971705305E-01,
  119. 7 0.6147118987142532E-01, 0.6158081806783294E-01/
  120. DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8),WG(9),
  121. 1 WG(10),WG(11),WG(12),WG(13)/
  122. 2 0.1139379850102629E-01, 0.2635498661503214E-01,
  123. 3 0.4093915670130631E-01, 0.5490469597583519E-01,
  124. 4 0.6803833381235692E-01, 0.8014070033500102E-01,
  125. 5 0.9102826198296365E-01, 0.1005359490670506E+00,
  126. 6 0.1085196244742637E+00, 0.1148582591457116E+00,
  127. 7 0.1194557635357848E+00, 0.1222424429903100E+00,
  128. 8 0.1231760537267155E+00/
  129. C
  130. C
  131. C LIST OF MAJOR VARIABLES
  132. C -----------------------
  133. C
  134. C CENTR - MID POINT OF THE INTERVAL
  135. C HLGTH - HALF-LENGTH OF THE INTERVAL
  136. C ABSC - ABSCISSA
  137. C FVAL* - FUNCTION VALUE
  138. C RESG - RESULT OF THE 25-POINT GAUSS FORMULA
  139. C RESK - RESULT OF THE 51-POINT KRONROD FORMULA
  140. C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
  141. C I.E. TO I/(B-A)
  142. C
  143. C MACHINE DEPENDENT CONSTANTS
  144. C ---------------------------
  145. C
  146. C EPMACH IS THE LARGEST RELATIVE SPACING.
  147. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
  148. C
  149. C***FIRST EXECUTABLE STATEMENT QK51
  150. EPMACH = R1MACH(4)
  151. UFLOW = R1MACH(1)
  152. C
  153. CENTR = 0.5E+00*(A+B)
  154. HLGTH = 0.5E+00*(B-A)
  155. DHLGTH = ABS(HLGTH)
  156. C
  157. C COMPUTE THE 51-POINT KRONROD APPROXIMATION TO
  158. C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
  159. C
  160. FC = F(CENTR)
  161. RESG = WG(13)*FC
  162. RESK = WGK(26)*FC
  163. RESABS = ABS(RESK)
  164. DO 10 J=1,12
  165. JTW = J*2
  166. ABSC = HLGTH*XGK(JTW)
  167. FVAL1 = F(CENTR-ABSC)
  168. FVAL2 = F(CENTR+ABSC)
  169. FV1(JTW) = FVAL1
  170. FV2(JTW) = FVAL2
  171. FSUM = FVAL1+FVAL2
  172. RESG = RESG+WG(J)*FSUM
  173. RESK = RESK+WGK(JTW)*FSUM
  174. RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
  175. 10 CONTINUE
  176. DO 15 J = 1,13
  177. JTWM1 = J*2-1
  178. ABSC = HLGTH*XGK(JTWM1)
  179. FVAL1 = F(CENTR-ABSC)
  180. FVAL2 = F(CENTR+ABSC)
  181. FV1(JTWM1) = FVAL1
  182. FV2(JTWM1) = FVAL2
  183. FSUM = FVAL1+FVAL2
  184. RESK = RESK+WGK(JTWM1)*FSUM
  185. RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
  186. 15 CONTINUE
  187. RESKH = RESK*0.5E+00
  188. RESASC = WGK(26)*ABS(FC-RESKH)
  189. DO 20 J=1,25
  190. RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
  191. 20 CONTINUE
  192. RESULT = RESK*HLGTH
  193. RESABS = RESABS*DHLGTH
  194. RESASC = RESASC*DHLGTH
  195. ABSERR = ABS((RESK-RESG)*HLGTH)
  196. IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
  197. 1 ABSERR = RESASC*MIN(0.1E+01,
  198. 2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
  199. IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
  200. 1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
  201. RETURN
  202. END