123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- *DECK QK51
- SUBROUTINE QK51 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
- C***BEGIN PROLOGUE QK51
- C***PURPOSE To compute I = Integral of F over (A,B) with error
- C estimate
- C J = Integral of ABS(F) over (A,B)
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A1A2
- C***TYPE SINGLE PRECISION (QK51-S, DQK51-D)
- C***KEYWORDS 51-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Integration rules
- C Standard fortran subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subroutine defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the calling program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral I
- C RESULT is computed by applying the 51-point
- C Kronrod rule (RESK) obtained by optimal addition
- C of abscissae to the 25-point Gauss rule (RESG).
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should not exceed ABS(I-RESULT)
- C
- C RESABS - Real
- C Approximation to the integral J
- C
- C RESASC - Real
- C Approximation to the integral of ABS(F-I/(B-A))
- C over (A,B)
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE QK51
- C
- REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
- 1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,
- 2 WG,WGK,XGK
- INTEGER J,JTW,JTWM1
- EXTERNAL F
- C
- DIMENSION FV1(25),FV2(25),XGK(26),WGK(26),WG(13)
- C
- C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
- C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
- C CORRESPONDING WEIGHTS ARE GIVEN.
- C
- C XGK - ABSCISSAE OF THE 51-POINT KRONROD RULE
- C XGK(2), XGK(4), ... ABSCISSAE OF THE 25-POINT
- C GAUSS RULE
- C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
- C ADDED TO THE 25-POINT GAUSS RULE
- C
- C WGK - WEIGHTS OF THE 51-POINT KRONROD RULE
- C
- C WG - WEIGHTS OF THE 25-POINT GAUSS RULE
- C
- SAVE XGK, WGK, WG
- DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8),
- 1 XGK(9),XGK(10),XGK(11),XGK(12),XGK(13),XGK(14)/
- 2 0.9992621049926098E+00, 0.9955569697904981E+00,
- 3 0.9880357945340772E+00, 0.9766639214595175E+00,
- 4 0.9616149864258425E+00, 0.9429745712289743E+00,
- 5 0.9207471152817016E+00, 0.8949919978782754E+00,
- 6 0.8658470652932756E+00, 0.8334426287608340E+00,
- 7 0.7978737979985001E+00, 0.7592592630373576E+00,
- 8 0.7177664068130844E+00, 0.6735663684734684E+00/
- DATA XGK(15),XGK(16),XGK(17),XGK(18),XGK(19),XGK(20),XGK(21),
- 1 XGK(22),XGK(23),XGK(24),XGK(25),XGK(26)/
- 2 0.6268100990103174E+00, 0.5776629302412230E+00,
- 3 0.5263252843347192E+00, 0.4730027314457150E+00,
- 4 0.4178853821930377E+00, 0.3611723058093878E+00,
- 5 0.3030895389311078E+00, 0.2438668837209884E+00,
- 6 0.1837189394210489E+00, 0.1228646926107104E+00,
- 7 0.6154448300568508E-01, 0.0E+00 /
- DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8),
- 1 WGK(9),WGK(10),WGK(11),WGK(12),WGK(13),WGK(14)/
- 2 0.1987383892330316E-02, 0.5561932135356714E-02,
- 3 0.9473973386174152E-02, 0.1323622919557167E-01,
- 4 0.1684781770912830E-01, 0.2043537114588284E-01,
- 5 0.2400994560695322E-01, 0.2747531758785174E-01,
- 6 0.3079230016738749E-01, 0.3400213027432934E-01,
- 7 0.3711627148341554E-01, 0.4008382550403238E-01,
- 8 0.4287284502017005E-01, 0.4550291304992179E-01/
- DATA WGK(15),WGK(16),WGK(17),WGK(18),WGK(19),WGK(20),WGK(21)
- 1 ,WGK(22),WGK(23),WGK(24),WGK(25),WGK(26)/
- 2 0.4798253713883671E-01, 0.5027767908071567E-01,
- 3 0.5236288580640748E-01, 0.5425112988854549E-01,
- 4 0.5595081122041232E-01, 0.5743711636156783E-01,
- 5 0.5868968002239421E-01, 0.5972034032417406E-01,
- 6 0.6053945537604586E-01, 0.6112850971705305E-01,
- 7 0.6147118987142532E-01, 0.6158081806783294E-01/
- DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8),WG(9),
- 1 WG(10),WG(11),WG(12),WG(13)/
- 2 0.1139379850102629E-01, 0.2635498661503214E-01,
- 3 0.4093915670130631E-01, 0.5490469597583519E-01,
- 4 0.6803833381235692E-01, 0.8014070033500102E-01,
- 5 0.9102826198296365E-01, 0.1005359490670506E+00,
- 6 0.1085196244742637E+00, 0.1148582591457116E+00,
- 7 0.1194557635357848E+00, 0.1222424429903100E+00,
- 8 0.1231760537267155E+00/
- C
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C CENTR - MID POINT OF THE INTERVAL
- C HLGTH - HALF-LENGTH OF THE INTERVAL
- C ABSC - ABSCISSA
- C FVAL* - FUNCTION VALUE
- C RESG - RESULT OF THE 25-POINT GAUSS FORMULA
- C RESK - RESULT OF THE 51-POINT KRONROD FORMULA
- C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
- C I.E. TO I/(B-A)
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QK51
- EPMACH = R1MACH(4)
- UFLOW = R1MACH(1)
- C
- CENTR = 0.5E+00*(A+B)
- HLGTH = 0.5E+00*(B-A)
- DHLGTH = ABS(HLGTH)
- C
- C COMPUTE THE 51-POINT KRONROD APPROXIMATION TO
- C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
- C
- FC = F(CENTR)
- RESG = WG(13)*FC
- RESK = WGK(26)*FC
- RESABS = ABS(RESK)
- DO 10 J=1,12
- JTW = J*2
- ABSC = HLGTH*XGK(JTW)
- FVAL1 = F(CENTR-ABSC)
- FVAL2 = F(CENTR+ABSC)
- FV1(JTW) = FVAL1
- FV2(JTW) = FVAL2
- FSUM = FVAL1+FVAL2
- RESG = RESG+WG(J)*FSUM
- RESK = RESK+WGK(JTW)*FSUM
- RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
- 10 CONTINUE
- DO 15 J = 1,13
- JTWM1 = J*2-1
- ABSC = HLGTH*XGK(JTWM1)
- FVAL1 = F(CENTR-ABSC)
- FVAL2 = F(CENTR+ABSC)
- FV1(JTWM1) = FVAL1
- FV2(JTWM1) = FVAL2
- FSUM = FVAL1+FVAL2
- RESK = RESK+WGK(JTWM1)*FSUM
- RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
- 15 CONTINUE
- RESKH = RESK*0.5E+00
- RESASC = WGK(26)*ABS(FC-RESKH)
- DO 20 J=1,25
- RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
- 20 CONTINUE
- RESULT = RESK*HLGTH
- RESABS = RESABS*DHLGTH
- RESASC = RESASC*DHLGTH
- ABSERR = ABS((RESK-RESG)*HLGTH)
- IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
- 1 ABSERR = RESASC*MIN(0.1E+01,
- 2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
- IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
- 1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
- RETURN
- END
|