123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- *DECK QK61
- SUBROUTINE QK61 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
- C***BEGIN PROLOGUE QK61
- C***PURPOSE To compute I = Integral of F over (A,B) with error
- C estimate
- C J = Integral of ABS(F) over (A,B)
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A1A2
- C***TYPE SINGLE PRECISION (QK61-S, DQK61-D)
- C***KEYWORDS 61-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Integration rule
- C Standard fortran subroutine
- C Real version
- C
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the calling program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral I
- C RESULT is computed by applying the 61-point
- C Kronrod rule (RESK) obtained by optimal addition of
- C abscissae to the 30-point Gauss rule (RESG).
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should equal or exceed ABS(I-RESULT)
- C
- C RESABS - Real
- C Approximation to the integral J
- C
- C RESASC - Real
- C Approximation to the integral of ABS(F-I/(B-A))
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE QK61
- C
- REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
- 1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,
- 2 WG,WGK,XGK
- INTEGER J,JTW,JTWM1
- EXTERNAL F
- C
- DIMENSION FV1(30),FV2(30),XGK(31),WGK(31),WG(15)
- C
- C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE
- C INTERVAL (-1,1). BECAUSE OF SYMMETRY ONLY THE POSITIVE
- C ABSCISSAE AND THEIR CORRESPONDING WEIGHTS ARE GIVEN.
- C
- C XGK - ABSCISSAE OF THE 61-POINT KRONROD RULE
- C XGK(2), XGK(4) ... ABSCISSAE OF THE 30-POINT
- C GAUSS RULE
- C XGK(1), XGK(3) ... OPTIMALLY ADDED ABSCISSAE
- C TO THE 30-POINT GAUSS RULE
- C
- C WGK - WEIGHTS OF THE 61-POINT KRONROD RULE
- C
- C WG - WEIGHTS OF THE 30-POINT GAUSS RULE
- C
- SAVE XGK, WGK, WG
- DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8),
- 1 XGK(9),XGK(10)/
- 2 0.9994844100504906E+00, 0.9968934840746495E+00,
- 3 0.9916309968704046E+00, 0.9836681232797472E+00,
- 4 0.9731163225011263E+00, 0.9600218649683075E+00,
- 5 0.9443744447485600E+00, 0.9262000474292743E+00,
- 6 0.9055733076999078E+00, 0.8825605357920527E+00/
- DATA XGK(11),XGK(12),XGK(13),XGK(14),XGK(15),XGK(16),
- 1 XGK(17),XGK(18),XGK(19),XGK(20)/
- 2 0.8572052335460611E+00, 0.8295657623827684E+00,
- 3 0.7997278358218391E+00, 0.7677774321048262E+00,
- 4 0.7337900624532268E+00, 0.6978504947933158E+00,
- 5 0.6600610641266270E+00, 0.6205261829892429E+00,
- 6 0.5793452358263617E+00, 0.5366241481420199E+00/
- DATA XGK(21),XGK(22),XGK(23),XGK(24),
- 1 XGK(25),XGK(26),XGK(27),XGK(28),XGK(29),XGK(30),XGK(31)/
- 2 0.4924804678617786E+00, 0.4470337695380892E+00,
- 3 0.4004012548303944E+00, 0.3527047255308781E+00,
- 4 0.3040732022736251E+00, 0.2546369261678898E+00,
- 5 0.2045251166823099E+00, 0.1538699136085835E+00,
- 6 0.1028069379667370E+00, 0.5147184255531770E-01,
- 7 0.0E+00 /
- DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8),
- 1 WGK(9),WGK(10)/
- 2 0.1389013698677008E-02, 0.3890461127099884E-02,
- 3 0.6630703915931292E-02, 0.9273279659517763E-02,
- 4 0.1182301525349634E-01, 0.1436972950704580E-01,
- 5 0.1692088918905327E-01, 0.1941414119394238E-01,
- 6 0.2182803582160919E-01, 0.2419116207808060E-01/
- DATA WGK(11),WGK(12),WGK(13),WGK(14),WGK(15),WGK(16),
- 1 WGK(17),WGK(18),WGK(19),WGK(20)/
- 2 0.2650995488233310E-01, 0.2875404876504129E-01,
- 3 0.3090725756238776E-01, 0.3298144705748373E-01,
- 4 0.3497933802806002E-01, 0.3688236465182123E-01,
- 5 0.3867894562472759E-01, 0.4037453895153596E-01,
- 6 0.4196981021516425E-01, 0.4345253970135607E-01/
- DATA WGK(21),WGK(22),WGK(23),WGK(24),
- 1 WGK(25),WGK(26),WGK(27),WGK(28),WGK(29),WGK(30),WGK(31)/
- 2 0.4481480013316266E-01, 0.4605923827100699E-01,
- 3 0.4718554656929915E-01, 0.4818586175708713E-01,
- 4 0.4905543455502978E-01, 0.4979568342707421E-01,
- 5 0.5040592140278235E-01, 0.5088179589874961E-01,
- 6 0.5122154784925877E-01, 0.5142612853745903E-01,
- 7 0.5149472942945157E-01/
- DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8)/
- 1 0.7968192496166606E-02, 0.1846646831109096E-01,
- 2 0.2878470788332337E-01, 0.3879919256962705E-01,
- 3 0.4840267283059405E-01, 0.5749315621761907E-01,
- 4 0.6597422988218050E-01, 0.7375597473770521E-01/
- DATA WG(9),WG(10),WG(11),WG(12),WG(13),WG(14),WG(15)/
- 1 0.8075589522942022E-01, 0.8689978720108298E-01,
- 2 0.9212252223778613E-01, 0.9636873717464426E-01,
- 3 0.9959342058679527E-01, 0.1017623897484055E+00,
- 4 0.1028526528935588E+00/
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C CENTR - MID POINT OF THE INTERVAL
- C HLGTH - HALF-LENGTH OF THE INTERVAL
- C ABSC - ABSCISSA
- C FVAL* - FUNCTION VALUE
- C RESG - RESULT OF THE 30-POINT GAUSS RULE
- C RESK - RESULT OF THE 61-POINT KRONROD RULE
- C RESKH - APPROXIMATION TO THE MEAN VALUE OF F
- C OVER (A,B), I.E. TO I/(B-A)
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QK61
- EPMACH = R1MACH(4)
- UFLOW = R1MACH(1)
- C
- CENTR = 0.5E+00*(B+A)
- HLGTH = 0.5E+00*(B-A)
- DHLGTH = ABS(HLGTH)
- C
- C COMPUTE THE 61-POINT KRONROD APPROXIMATION TO THE
- C INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
- C
- RESG = 0.0E+00
- FC = F(CENTR)
- RESK = WGK(31)*FC
- RESABS = ABS(RESK)
- DO 10 J=1,15
- JTW = J*2
- ABSC = HLGTH*XGK(JTW)
- FVAL1 = F(CENTR-ABSC)
- FVAL2 = F(CENTR+ABSC)
- FV1(JTW) = FVAL1
- FV2(JTW) = FVAL2
- FSUM = FVAL1+FVAL2
- RESG = RESG+WG(J)*FSUM
- RESK = RESK+WGK(JTW)*FSUM
- RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
- 10 CONTINUE
- DO 15 J=1,15
- JTWM1 = J*2-1
- ABSC = HLGTH*XGK(JTWM1)
- FVAL1 = F(CENTR-ABSC)
- FVAL2 = F(CENTR+ABSC)
- FV1(JTWM1) = FVAL1
- FV2(JTWM1) = FVAL2
- FSUM = FVAL1+FVAL2
- RESK = RESK+WGK(JTWM1)*FSUM
- RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
- 15 CONTINUE
- RESKH = RESK*0.5E+00
- RESASC = WGK(31)*ABS(FC-RESKH)
- DO 20 J=1,30
- RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
- 20 CONTINUE
- RESULT = RESK*HLGTH
- RESABS = RESABS*DHLGTH
- RESASC = RESASC*DHLGTH
- ABSERR = ABS((RESK-RESG)*HLGTH)
- IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
- 1 ABSERR = RESASC*MIN(0.1E+01,
- 2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
- IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
- 1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
- RETURN
- END
|