123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- *DECK QNG
- SUBROUTINE QNG (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
- + IER)
- C***BEGIN PROLOGUE QNG
- C***PURPOSE The routine calculates an approximation result to a
- C given definite integral I = integral of F over (A,B),
- C hopefully satisfying following claim for accuracy
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A1A1
- C***TYPE SINGLE PRECISION (QNG-S, DQNG-D)
- C***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD(PATTERSON) RULES,
- C NONADAPTIVE, QUADPACK, QUADRATURE, SMOOTH INTEGRAND
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C NON-ADAPTIVE INTEGRATION
- C STANDARD FORTRAN SUBROUTINE
- C REAL VERSION
- C
- C F - Real version
- C Function subprogram defining the integrand function
- C F(X). The actual name for F needs to be declared
- C E X T E R N A L in the driver program.
- C
- C A - Real version
- C Lower limit of integration
- C
- C B - Real version
- C Upper limit of integration
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C The routine will end with IER = 6.
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral I
- C Result is obtained by applying the 21-POINT
- C GAUSS-KRONROD RULE (RES21) obtained by optimal
- C addition of abscissae to the 10-POINT GAUSS RULE
- C (RES10), or by applying the 43-POINT RULE (RES43)
- C obtained by optimal addition of abscissae to the
- C 21-POINT GAUSS-KRONROD RULE, or by applying the
- C 87-POINT RULE (RES87) obtained by optimal addition
- C of abscissae to the 43-POINT RULE.
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should EQUAL or EXCEED ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - IER = 0 normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C IER.GT.0 Abnormal termination of the routine. It is
- C assumed that the requested accuracy has
- C not been achieved.
- C ERROR MESSAGES
- C IER = 1 The maximum number of steps has been
- C executed. The integral is probably too
- C difficult to be calculated by DQNG.
- C = 6 The input is invalid, because
- C EPSABS.LE.0 AND
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
- C RESULT, ABSERR and NEVAL are set to zero.
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED R1MACH, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C***END PROLOGUE QNG
- C
- REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,EPSABS,EPSREL,F,FCENTR,
- 1 FVAL,FVAL1,FVAL2,FV1,FV2,FV3,FV4,HLGTH,RESULT,RES10,RES21,RES43,
- 2 RES87,RESABS,RESASC,RESKH,R1MACH,SAVFUN,UFLOW,W10,W21A,W43A,
- 3 W43B,W87A,W87B,X1,X2,X3,X4
- INTEGER IER,IPX,K,L,NEVAL
- EXTERNAL F
- C
- DIMENSION FV1(5),FV2(5),FV3(5),FV4(5),X1(5),X2(5),X3(11),X4(22),
- 1 W10(5),W21A(5),W21B(6),W43A(10),W43B(12),W87A(21),W87B(23),
- 2 SAVFUN(21)
- C
- C THE FOLLOWING DATA STATEMENTS CONTAIN THE
- C ABSCISSAE AND WEIGHTS OF THE INTEGRATION RULES USED.
- C
- C X1 ABSCISSAE COMMON TO THE 10-, 21-, 43-
- C AND 87-POINT RULE
- C X2 ABSCISSAE COMMON TO THE 21-, 43- AND
- C 87-POINT RULE
- C X3 ABSCISSAE COMMON TO THE 43- AND 87-POINT
- C RULE
- C X4 ABSCISSAE OF THE 87-POINT RULE
- C W10 WEIGHTS OF THE 10-POINT FORMULA
- C W21A WEIGHTS OF THE 21-POINT FORMULA FOR
- C ABSCISSAE X1
- C W21B WEIGHTS OF THE 21-POINT FORMULA FOR
- C ABSCISSAE X2
- C W43A WEIGHTS OF THE 43-POINT FORMULA FOR
- C ABSCISSAE X1, X3
- C W43B WEIGHTS OF THE 43-POINT FORMULA FOR
- C ABSCISSAE X3
- C W87A WEIGHTS OF THE 87-POINT FORMULA FOR
- C ABSCISSAE X1, X2, X3
- C W87B WEIGHTS OF THE 87-POINT FORMULA FOR
- C ABSCISSAE X4
- C
- SAVE X1, X2, X3, X4, W10, W21A, W21B, W43A, W43B, W87A, W87B
- DATA X1(1),X1(2),X1(3),X1(4),X1(5)/
- 1 0.9739065285171717E+00, 0.8650633666889845E+00,
- 2 0.6794095682990244E+00, 0.4333953941292472E+00,
- 3 0.1488743389816312E+00/
- DATA X2(1),X2(2),X2(3),X2(4),X2(5)/
- 1 0.9956571630258081E+00, 0.9301574913557082E+00,
- 2 0.7808177265864169E+00, 0.5627571346686047E+00,
- 3 0.2943928627014602E+00/
- DATA X3(1),X3(2),X3(3),X3(4),X3(5),X3(6),X3(7),X3(8),
- 1 X3(9),X3(10),X3(11)/
- 2 0.9993333609019321E+00, 0.9874334029080889E+00,
- 3 0.9548079348142663E+00, 0.9001486957483283E+00,
- 4 0.8251983149831142E+00, 0.7321483889893050E+00,
- 5 0.6228479705377252E+00, 0.4994795740710565E+00,
- 6 0.3649016613465808E+00, 0.2222549197766013E+00,
- 7 0.7465061746138332E-01/
- DATA X4(1),X4(2),X4(3),X4(4),X4(5),X4(6),X4(7),X4(8),X4(9),
- 1 X4(10),X4(11),X4(12),X4(13),X4(14),X4(15),X4(16),X4(17),X4(18),
- 2 X4(19),X4(20),X4(21),X4(22)/ 0.9999029772627292E+00,
- 3 0.9979898959866787E+00, 0.9921754978606872E+00,
- 4 0.9813581635727128E+00, 0.9650576238583846E+00,
- 5 0.9431676131336706E+00, 0.9158064146855072E+00,
- 6 0.8832216577713165E+00, 0.8457107484624157E+00,
- 7 0.8035576580352310E+00, 0.7570057306854956E+00,
- 8 0.7062732097873218E+00, 0.6515894665011779E+00,
- 9 0.5932233740579611E+00, 0.5314936059708319E+00,
- 1 0.4667636230420228E+00, 0.3994248478592188E+00,
- 2 0.3298748771061883E+00, 0.2585035592021616E+00,
- 3 0.1856953965683467E+00, 0.1118422131799075E+00,
- 4 0.3735212339461987E-01/
- DATA W10(1),W10(2),W10(3),W10(4),W10(5)/
- 1 0.6667134430868814E-01, 0.1494513491505806E+00,
- 2 0.2190863625159820E+00, 0.2692667193099964E+00,
- 3 0.2955242247147529E+00/
- DATA W21A(1),W21A(2),W21A(3),W21A(4),W21A(5)/
- 1 0.3255816230796473E-01, 0.7503967481091995E-01,
- 2 0.1093871588022976E+00, 0.1347092173114733E+00,
- 3 0.1477391049013385E+00/
- DATA W21B(1),W21B(2),W21B(3),W21B(4),W21B(5),W21B(6)/
- 1 0.1169463886737187E-01, 0.5475589657435200E-01,
- 2 0.9312545458369761E-01, 0.1234919762620659E+00,
- 3 0.1427759385770601E+00, 0.1494455540029169E+00/
- DATA W43A(1),W43A(2),W43A(3),W43A(4),W43A(5),W43A(6),W43A(7),
- 1 W43A(8),W43A(9),W43A(10)/ 0.1629673428966656E-01,
- 2 0.3752287612086950E-01, 0.5469490205825544E-01,
- 3 0.6735541460947809E-01, 0.7387019963239395E-01,
- 4 0.5768556059769796E-02, 0.2737189059324884E-01,
- 5 0.4656082691042883E-01, 0.6174499520144256E-01,
- 6 0.7138726726869340E-01/
- DATA W43B(1),W43B(2),W43B(3),W43B(4),W43B(5),W43B(6),
- 1 W43B(7),W43B(8),W43B(9),W43B(10),W43B(11),W43B(12)/
- 2 0.1844477640212414E-02, 0.1079868958589165E-01,
- 3 0.2189536386779543E-01, 0.3259746397534569E-01,
- 4 0.4216313793519181E-01, 0.5074193960018458E-01,
- 5 0.5837939554261925E-01, 0.6474640495144589E-01,
- 6 0.6956619791235648E-01, 0.7282444147183321E-01,
- 7 0.7450775101417512E-01, 0.7472214751740301E-01/
- DATA W87A(1),W87A(2),W87A(3),W87A(4),W87A(5),W87A(6),
- 1 W87A(7),W87A(8),W87A(9),W87A(10),W87A(11),W87A(12),
- 2 W87A(13),W87A(14),W87A(15),W87A(16),W87A(17),W87A(18),
- 3 W87A(19),W87A(20),W87A(21)/
- 4 0.8148377384149173E-02, 0.1876143820156282E-01,
- 5 0.2734745105005229E-01, 0.3367770731163793E-01,
- 6 0.3693509982042791E-01, 0.2884872430211531E-02,
- 7 0.1368594602271270E-01, 0.2328041350288831E-01,
- 8 0.3087249761171336E-01, 0.3569363363941877E-01,
- 9 0.9152833452022414E-03, 0.5399280219300471E-02,
- 1 0.1094767960111893E-01, 0.1629873169678734E-01,
- 2 0.2108156888920384E-01, 0.2537096976925383E-01,
- 3 0.2918969775647575E-01, 0.3237320246720279E-01,
- 4 0.3478309895036514E-01, 0.3641222073135179E-01,
- 5 0.3725387550304771E-01/
- DATA W87B(1),W87B(2),W87B(3),W87B(4),W87B(5),W87B(6),W87B(7),
- 1 W87B(8),W87B(9),W87B(10),W87B(11),W87B(12),W87B(13),W87B(14),
- 2 W87B(15),W87B(16),W87B(17),W87B(18),W87B(19),W87B(20),
- 3 W87B(21),W87B(22),W87B(23)/ 0.2741455637620724E-03,
- 4 0.1807124155057943E-02, 0.4096869282759165E-02,
- 5 0.6758290051847379E-02, 0.9549957672201647E-02,
- 6 0.1232944765224485E-01, 0.1501044734638895E-01,
- 7 0.1754896798624319E-01, 0.1993803778644089E-01,
- 8 0.2219493596101229E-01, 0.2433914712600081E-01,
- 9 0.2637450541483921E-01, 0.2828691078877120E-01,
- 1 0.3005258112809270E-01, 0.3164675137143993E-01,
- 2 0.3305041341997850E-01, 0.3425509970422606E-01,
- 3 0.3526241266015668E-01, 0.3607698962288870E-01,
- 4 0.3669860449845609E-01, 0.3712054926983258E-01,
- 5 0.3733422875193504E-01, 0.3736107376267902E-01/
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C CENTR - MID POINT OF THE INTEGRATION INTERVAL
- C HLGTH - HALF-LENGTH OF THE INTEGRATION INTERVAL
- C FCENTR - FUNCTION VALUE AT MID POINT
- C ABSC - ABSCISSA
- C FVAL - FUNCTION VALUE
- C SAVFUN - ARRAY OF FUNCTION VALUES WHICH
- C HAVE ALREADY BEEN COMPUTED
- C RES10 - 10-POINT GAUSS RESULT
- C RES21 - 21-POINT KRONROD RESULT
- C RES43 - 43-POINT RESULT
- C RES87 - 87-POINT RESULT
- C RESABS - APPROXIMATION TO THE INTEGRAL OF ABS(F)
- C RESASC - APPROXIMATION TO THE INTEGRAL OF ABS(F-I/(B-A))
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QNG
- EPMACH = R1MACH(4)
- UFLOW = R1MACH(1)
- C
- C TEST ON VALIDITY OF PARAMETERS
- C ------------------------------
- C
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- NEVAL = 0
- IER = 6
- IF(EPSABS.LE.0.0E+00.AND.EPSREL.LT.MAX(0.5E-14,0.5E+02*EPMACH))
- 1 GO TO 80
- HLGTH = 0.5E+00*(B-A)
- DHLGTH = ABS(HLGTH)
- CENTR = 0.5E+00*(B+A)
- FCENTR = F(CENTR)
- NEVAL = 21
- IER = 1
- C
- C COMPUTE THE INTEGRAL USING THE 10- AND 21-POINT FORMULA.
- C
- DO 70 L = 1,3
- GO TO (5,25,45),L
- 5 RES10 = 0.0E+00
- RES21 = W21B(6)*FCENTR
- RESABS = W21B(6)*ABS(FCENTR)
- DO 10 K=1,5
- ABSC = HLGTH*X1(K)
- FVAL1 = F(CENTR+ABSC)
- FVAL2 = F(CENTR-ABSC)
- FVAL = FVAL1+FVAL2
- RES10 = RES10+W10(K)*FVAL
- RES21 = RES21+W21A(K)*FVAL
- RESABS = RESABS+W21A(K)*(ABS(FVAL1)+ABS(FVAL2))
- SAVFUN(K) = FVAL
- FV1(K) = FVAL1
- FV2(K) = FVAL2
- 10 CONTINUE
- IPX = 5
- DO 15 K=1,5
- IPX = IPX+1
- ABSC = HLGTH*X2(K)
- FVAL1 = F(CENTR+ABSC)
- FVAL2 = F(CENTR-ABSC)
- FVAL = FVAL1+FVAL2
- RES21 = RES21+W21B(K)*FVAL
- RESABS = RESABS+W21B(K)*(ABS(FVAL1)+ABS(FVAL2))
- SAVFUN(IPX) = FVAL
- FV3(K) = FVAL1
- FV4(K) = FVAL2
- 15 CONTINUE
- C
- C TEST FOR CONVERGENCE.
- C
- RESULT = RES21*HLGTH
- RESABS = RESABS*DHLGTH
- RESKH = 0.5E+00*RES21
- RESASC = W21B(6)*ABS(FCENTR-RESKH)
- DO 20 K = 1,5
- RESASC = RESASC+W21A(K)*(ABS(FV1(K)-RESKH)+ABS(FV2(K)-RESKH))
- 1 +W21B(K)*(ABS(FV3(K)-RESKH)+ABS(FV4(K)-RESKH))
- 20 CONTINUE
- ABSERR = ABS((RES21-RES10)*HLGTH)
- RESASC = RESASC*DHLGTH
- GO TO 65
- C
- C COMPUTE THE INTEGRAL USING THE 43-POINT FORMULA.
- C
- 25 RES43 = W43B(12)*FCENTR
- NEVAL = 43
- DO 30 K=1,10
- RES43 = RES43+SAVFUN(K)*W43A(K)
- 30 CONTINUE
- DO 40 K=1,11
- IPX = IPX+1
- ABSC = HLGTH*X3(K)
- FVAL = F(ABSC+CENTR)+F(CENTR-ABSC)
- RES43 = RES43+FVAL*W43B(K)
- SAVFUN(IPX) = FVAL
- 40 CONTINUE
- C
- C TEST FOR CONVERGENCE.
- C
- RESULT = RES43*HLGTH
- ABSERR = ABS((RES43-RES21)*HLGTH)
- GO TO 65
- C
- C COMPUTE THE INTEGRAL USING THE 87-POINT FORMULA.
- C
- 45 RES87 = W87B(23)*FCENTR
- NEVAL = 87
- DO 50 K=1,21
- RES87 = RES87+SAVFUN(K)*W87A(K)
- 50 CONTINUE
- DO 60 K=1,22
- ABSC = HLGTH*X4(K)
- RES87 = RES87+W87B(K)*(F(ABSC+CENTR)+F(CENTR-ABSC))
- 60 CONTINUE
- RESULT = RES87*HLGTH
- ABSERR = ABS((RES87-RES43)*HLGTH)
- 65 IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
- 1 ABSERR = RESASC*MIN(0.1E+01,
- 2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
- IF (RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
- 1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
- IF (ABSERR.LE.MAX(EPSABS,EPSREL*ABS(RESULT))) IER = 0
- C ***JUMP OUT OF DO-LOOP
- IF (IER.EQ.0) GO TO 999
- 70 CONTINUE
- 80 CALL XERMSG ('SLATEC', 'QNG', 'ABNORMAL RETURN', IER, 0)
- 999 RETURN
- END
|