123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- *DECK QZIT
- SUBROUTINE QZIT (NM, N, A, B, EPS1, MATZ, Z, IERR)
- C***BEGIN PROLOGUE QZIT
- C***PURPOSE The second step of the QZ algorithm for generalized
- C eigenproblems. Accepts an upper Hessenberg and an upper
- C triangular matrix and reduces the former to
- C quasi-triangular form while preserving the form of the
- C latter. Usually preceded by QZHES and followed by QZVAL
- C and QZVEC.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C1B3
- C***TYPE SINGLE PRECISION (QZIT-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is the second step of the QZ algorithm
- C for solving generalized matrix eigenvalue problems,
- C SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART,
- C as modified in technical note NASA TN D-7305(1973) by WARD.
- C
- C This subroutine accepts a pair of REAL matrices, one of them
- C in upper Hessenberg form and the other in upper triangular form.
- C It reduces the Hessenberg matrix to quasi-triangular form using
- C orthogonal transformations while maintaining the triangular form
- C of the other matrix. It is usually preceded by QZHES and
- C followed by QZVAL and, possibly, QZVEC.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A, B, and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrices A and B. N is an INTEGER
- C variable. N must be less than or equal to NM.
- C
- C A contains a real upper Hessenberg matrix. A is a two-
- C dimensional REAL array, dimensioned A(NM,N).
- C
- C B contains a real upper triangular matrix. B is a two-
- C dimensional REAL array, dimensioned B(NM,N).
- C
- C EPS1 is a tolerance used to determine negligible elements.
- C EPS1 = 0.0 (or negative) may be input, in which case an
- C element will be neglected only if it is less than roundoff
- C error times the norm of its matrix. If the input EPS1 is
- C positive, then an element will be considered negligible
- C if it is less than EPS1 times the norm of its matrix. A
- C positive value of EPS1 may result in faster execution,
- C but less accurate results. EPS1 is a REAL variable.
- C
- C MATZ should be set to .TRUE. if the right hand transformations
- C are to be accumulated for later use in computing
- C eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
- C variable.
- C
- C Z contains, if MATZ has been set to .TRUE., the transformation
- C matrix produced in the reduction by QZHES, if performed, or
- C else the identity matrix. If MATZ has been set to .FALSE.,
- C Z is not referenced. Z is a two-dimensional REAL array,
- C dimensioned Z(NM,N).
- C
- C On Output
- C
- C A has been reduced to quasi-triangular form. The elements
- C below the first subdiagonal are still zero, and no two
- C consecutive subdiagonal elements are nonzero.
- C
- C B is still in upper triangular form, although its elements
- C have been altered. The location B(N,1) is used to store
- C EPS1 times the norm of B for later use by QZVAL and QZVEC.
- C
- C Z contains the product of the right hand transformations
- C (for both steps) if MATZ has been set to .TRUE.
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C J if neither A(J,J-1) nor A(J-1,J-2) has become
- C zero after a total of 30*N iterations.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE QZIT
- C
- INTEGER I,J,K,L,N,EN,K1,K2,LD,LL,L1,NA,NM,ISH,ITN,ITS,KM1,LM1
- INTEGER ENM2,IERR,LOR1,ENORN
- REAL A(NM,*),B(NM,*),Z(NM,*)
- REAL R,S,T,A1,A2,A3,EP,SH,U1,U2,U3,V1,V2,V3,ANI
- REAL A11,A12,A21,A22,A33,A34,A43,A44,BNI,B11
- REAL B12,B22,B33,B34,B44,EPSA,EPSB,EPS1,ANORM,BNORM
- LOGICAL MATZ,NOTLAS
- C
- C***FIRST EXECUTABLE STATEMENT QZIT
- IERR = 0
- C .......... COMPUTE EPSA,EPSB ..........
- ANORM = 0.0E0
- BNORM = 0.0E0
- C
- DO 30 I = 1, N
- ANI = 0.0E0
- IF (I .NE. 1) ANI = ABS(A(I,I-1))
- BNI = 0.0E0
- C
- DO 20 J = I, N
- ANI = ANI + ABS(A(I,J))
- BNI = BNI + ABS(B(I,J))
- 20 CONTINUE
- C
- IF (ANI .GT. ANORM) ANORM = ANI
- IF (BNI .GT. BNORM) BNORM = BNI
- 30 CONTINUE
- C
- IF (ANORM .EQ. 0.0E0) ANORM = 1.0E0
- IF (BNORM .EQ. 0.0E0) BNORM = 1.0E0
- EP = EPS1
- IF (EP .GT. 0.0E0) GO TO 50
- C .......... COMPUTE ROUNDOFF LEVEL IF EPS1 IS ZERO ..........
- EP = 1.0E0
- 40 EP = EP / 2.0E0
- IF (1.0E0 + EP .GT. 1.0E0) GO TO 40
- 50 EPSA = EP * ANORM
- EPSB = EP * BNORM
- C .......... REDUCE A TO QUASI-TRIANGULAR FORM, WHILE
- C KEEPING B TRIANGULAR ..........
- LOR1 = 1
- ENORN = N
- EN = N
- ITN = 30*N
- C .......... BEGIN QZ STEP ..........
- 60 IF (EN .LE. 2) GO TO 1001
- IF (.NOT. MATZ) ENORN = EN
- ITS = 0
- NA = EN - 1
- ENM2 = NA - 1
- 70 ISH = 2
- C .......... CHECK FOR CONVERGENCE OR REDUCIBILITY.
- C FOR L=EN STEP -1 UNTIL 1 DO -- ..........
- DO 80 LL = 1, EN
- LM1 = EN - LL
- L = LM1 + 1
- IF (L .EQ. 1) GO TO 95
- IF (ABS(A(L,LM1)) .LE. EPSA) GO TO 90
- 80 CONTINUE
- C
- 90 A(L,LM1) = 0.0E0
- IF (L .LT. NA) GO TO 95
- C .......... 1-BY-1 OR 2-BY-2 BLOCK ISOLATED ..........
- EN = LM1
- GO TO 60
- C .......... CHECK FOR SMALL TOP OF B ..........
- 95 LD = L
- 100 L1 = L + 1
- B11 = B(L,L)
- IF (ABS(B11) .GT. EPSB) GO TO 120
- B(L,L) = 0.0E0
- S = ABS(A(L,L)) + ABS(A(L1,L))
- U1 = A(L,L) / S
- U2 = A(L1,L) / S
- R = SIGN(SQRT(U1*U1+U2*U2),U1)
- V1 = -(U1 + R) / R
- V2 = -U2 / R
- U2 = V2 / V1
- C
- DO 110 J = L, ENORN
- T = A(L,J) + U2 * A(L1,J)
- A(L,J) = A(L,J) + T * V1
- A(L1,J) = A(L1,J) + T * V2
- T = B(L,J) + U2 * B(L1,J)
- B(L,J) = B(L,J) + T * V1
- B(L1,J) = B(L1,J) + T * V2
- 110 CONTINUE
- C
- IF (L .NE. 1) A(L,LM1) = -A(L,LM1)
- LM1 = L
- L = L1
- GO TO 90
- 120 A11 = A(L,L) / B11
- A21 = A(L1,L) / B11
- IF (ISH .EQ. 1) GO TO 140
- C .......... ITERATION STRATEGY ..........
- IF (ITN .EQ. 0) GO TO 1000
- IF (ITS .EQ. 10) GO TO 155
- C .......... DETERMINE TYPE OF SHIFT ..........
- B22 = B(L1,L1)
- IF (ABS(B22) .LT. EPSB) B22 = EPSB
- B33 = B(NA,NA)
- IF (ABS(B33) .LT. EPSB) B33 = EPSB
- B44 = B(EN,EN)
- IF (ABS(B44) .LT. EPSB) B44 = EPSB
- A33 = A(NA,NA) / B33
- A34 = A(NA,EN) / B44
- A43 = A(EN,NA) / B33
- A44 = A(EN,EN) / B44
- B34 = B(NA,EN) / B44
- T = 0.5E0 * (A43 * B34 - A33 - A44)
- R = T * T + A34 * A43 - A33 * A44
- IF (R .LT. 0.0E0) GO TO 150
- C .......... DETERMINE SINGLE SHIFT ZEROTH COLUMN OF A ..........
- ISH = 1
- R = SQRT(R)
- SH = -T + R
- S = -T - R
- IF (ABS(S-A44) .LT. ABS(SH-A44)) SH = S
- C .......... LOOK FOR TWO CONSECUTIVE SMALL
- C SUB-DIAGONAL ELEMENTS OF A.
- C FOR L=EN-2 STEP -1 UNTIL LD DO -- ..........
- DO 130 LL = LD, ENM2
- L = ENM2 + LD - LL
- IF (L .EQ. LD) GO TO 140
- LM1 = L - 1
- L1 = L + 1
- T = A(L,L)
- IF (ABS(B(L,L)) .GT. EPSB) T = T - SH * B(L,L)
- IF (ABS(A(L,LM1)) .LE. ABS(T/A(L1,L)) * EPSA) GO TO 100
- 130 CONTINUE
- C
- 140 A1 = A11 - SH
- A2 = A21
- IF (L .NE. LD) A(L,LM1) = -A(L,LM1)
- GO TO 160
- C .......... DETERMINE DOUBLE SHIFT ZEROTH COLUMN OF A ..........
- 150 A12 = A(L,L1) / B22
- A22 = A(L1,L1) / B22
- B12 = B(L,L1) / B22
- A1 = ((A33 - A11) * (A44 - A11) - A34 * A43 + A43 * B34 * A11)
- 1 / A21 + A12 - A11 * B12
- A2 = (A22 - A11) - A21 * B12 - (A33 - A11) - (A44 - A11)
- 1 + A43 * B34
- A3 = A(L1+1,L1) / B22
- GO TO 160
- C .......... AD HOC SHIFT ..........
- 155 A1 = 0.0E0
- A2 = 1.0E0
- A3 = 1.1605E0
- 160 ITS = ITS + 1
- ITN = ITN - 1
- IF (.NOT. MATZ) LOR1 = LD
- C .......... MAIN LOOP ..........
- DO 260 K = L, NA
- NOTLAS = K .NE. NA .AND. ISH .EQ. 2
- K1 = K + 1
- K2 = K + 2
- KM1 = MAX(K-1,L)
- LL = MIN(EN,K1+ISH)
- IF (NOTLAS) GO TO 190
- C .......... ZERO A(K+1,K-1) ..........
- IF (K .EQ. L) GO TO 170
- A1 = A(K,KM1)
- A2 = A(K1,KM1)
- 170 S = ABS(A1) + ABS(A2)
- IF (S .EQ. 0.0E0) GO TO 70
- U1 = A1 / S
- U2 = A2 / S
- R = SIGN(SQRT(U1*U1+U2*U2),U1)
- V1 = -(U1 + R) / R
- V2 = -U2 / R
- U2 = V2 / V1
- C
- DO 180 J = KM1, ENORN
- T = A(K,J) + U2 * A(K1,J)
- A(K,J) = A(K,J) + T * V1
- A(K1,J) = A(K1,J) + T * V2
- T = B(K,J) + U2 * B(K1,J)
- B(K,J) = B(K,J) + T * V1
- B(K1,J) = B(K1,J) + T * V2
- 180 CONTINUE
- C
- IF (K .NE. L) A(K1,KM1) = 0.0E0
- GO TO 240
- C .......... ZERO A(K+1,K-1) AND A(K+2,K-1) ..........
- 190 IF (K .EQ. L) GO TO 200
- A1 = A(K,KM1)
- A2 = A(K1,KM1)
- A3 = A(K2,KM1)
- 200 S = ABS(A1) + ABS(A2) + ABS(A3)
- IF (S .EQ. 0.0E0) GO TO 260
- U1 = A1 / S
- U2 = A2 / S
- U3 = A3 / S
- R = SIGN(SQRT(U1*U1+U2*U2+U3*U3),U1)
- V1 = -(U1 + R) / R
- V2 = -U2 / R
- V3 = -U3 / R
- U2 = V2 / V1
- U3 = V3 / V1
- C
- DO 210 J = KM1, ENORN
- T = A(K,J) + U2 * A(K1,J) + U3 * A(K2,J)
- A(K,J) = A(K,J) + T * V1
- A(K1,J) = A(K1,J) + T * V2
- A(K2,J) = A(K2,J) + T * V3
- T = B(K,J) + U2 * B(K1,J) + U3 * B(K2,J)
- B(K,J) = B(K,J) + T * V1
- B(K1,J) = B(K1,J) + T * V2
- B(K2,J) = B(K2,J) + T * V3
- 210 CONTINUE
- C
- IF (K .EQ. L) GO TO 220
- A(K1,KM1) = 0.0E0
- A(K2,KM1) = 0.0E0
- C .......... ZERO B(K+2,K+1) AND B(K+2,K) ..........
- 220 S = ABS(B(K2,K2)) + ABS(B(K2,K1)) + ABS(B(K2,K))
- IF (S .EQ. 0.0E0) GO TO 240
- U1 = B(K2,K2) / S
- U2 = B(K2,K1) / S
- U3 = B(K2,K) / S
- R = SIGN(SQRT(U1*U1+U2*U2+U3*U3),U1)
- V1 = -(U1 + R) / R
- V2 = -U2 / R
- V3 = -U3 / R
- U2 = V2 / V1
- U3 = V3 / V1
- C
- DO 230 I = LOR1, LL
- T = A(I,K2) + U2 * A(I,K1) + U3 * A(I,K)
- A(I,K2) = A(I,K2) + T * V1
- A(I,K1) = A(I,K1) + T * V2
- A(I,K) = A(I,K) + T * V3
- T = B(I,K2) + U2 * B(I,K1) + U3 * B(I,K)
- B(I,K2) = B(I,K2) + T * V1
- B(I,K1) = B(I,K1) + T * V2
- B(I,K) = B(I,K) + T * V3
- 230 CONTINUE
- C
- B(K2,K) = 0.0E0
- B(K2,K1) = 0.0E0
- IF (.NOT. MATZ) GO TO 240
- C
- DO 235 I = 1, N
- T = Z(I,K2) + U2 * Z(I,K1) + U3 * Z(I,K)
- Z(I,K2) = Z(I,K2) + T * V1
- Z(I,K1) = Z(I,K1) + T * V2
- Z(I,K) = Z(I,K) + T * V3
- 235 CONTINUE
- C .......... ZERO B(K+1,K) ..........
- 240 S = ABS(B(K1,K1)) + ABS(B(K1,K))
- IF (S .EQ. 0.0E0) GO TO 260
- U1 = B(K1,K1) / S
- U2 = B(K1,K) / S
- R = SIGN(SQRT(U1*U1+U2*U2),U1)
- V1 = -(U1 + R) / R
- V2 = -U2 / R
- U2 = V2 / V1
- C
- DO 250 I = LOR1, LL
- T = A(I,K1) + U2 * A(I,K)
- A(I,K1) = A(I,K1) + T * V1
- A(I,K) = A(I,K) + T * V2
- T = B(I,K1) + U2 * B(I,K)
- B(I,K1) = B(I,K1) + T * V1
- B(I,K) = B(I,K) + T * V2
- 250 CONTINUE
- C
- B(K1,K) = 0.0E0
- IF (.NOT. MATZ) GO TO 260
- C
- DO 255 I = 1, N
- T = Z(I,K1) + U2 * Z(I,K)
- Z(I,K1) = Z(I,K1) + T * V1
- Z(I,K) = Z(I,K) + T * V2
- 255 CONTINUE
- C
- 260 CONTINUE
- C .......... END QZ STEP ..........
- GO TO 70
- C .......... SET ERROR -- NEITHER BOTTOM SUBDIAGONAL ELEMENT
- C HAS BECOME NEGLIGIBLE AFTER 30*N ITERATIONS ..........
- 1000 IERR = EN
- C .......... SAVE EPSB FOR USE BY QZVAL AND QZVEC ..........
- 1001 IF (N .GT. 1) B(N,1) = EPSB
- RETURN
- END
|