123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- *DECK QZVAL
- SUBROUTINE QZVAL (NM, N, A, B, ALFR, ALFI, BETA, MATZ, Z)
- C***BEGIN PROLOGUE QZVAL
- C***PURPOSE The third step of the QZ algorithm for generalized
- C eigenproblems. Accepts a pair of real matrices, one in
- C quasi-triangular form and the other in upper triangular
- C form and computes the eigenvalues of the associated
- C eigenproblem. Usually preceded by QZHES, QZIT, and
- C followed by QZVEC.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C2C
- C***TYPE SINGLE PRECISION (QZVAL-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is the third step of the QZ algorithm
- C for solving generalized matrix eigenvalue problems,
- C SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.
- C
- C This subroutine accepts a pair of REAL matrices, one of them
- C in quasi-triangular form and the other in upper triangular form.
- C It reduces the quasi-triangular matrix further, so that any
- C remaining 2-by-2 blocks correspond to pairs of complex
- C eigenvalues, and returns quantities whose ratios give the
- C generalized eigenvalues. It is usually preceded by QZHES
- C and QZIT and may be followed by QZVEC.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A, B, and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrices A and B. N is an INTEGER
- C variable. N must be less than or equal to NM.
- C
- C A contains a real upper quasi-triangular matrix. A is a two-
- C dimensional REAL array, dimensioned A(NM,N).
- C
- C B contains a real upper triangular matrix. In addition,
- C location B(N,1) contains the tolerance quantity (EPSB)
- C computed and saved in QZIT. B is a two-dimensional REAL
- C array, dimensioned B(NM,N).
- C
- C MATZ should be set to .TRUE. if the right hand transformations
- C are to be accumulated for later use in computing
- C eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
- C variable.
- C
- C Z contains, if MATZ has been set to .TRUE., the transformation
- C matrix produced in the reductions by QZHES and QZIT, if
- C performed, or else the identity matrix. If MATZ has been set
- C to .FALSE., Z is not referenced. Z is a two-dimensional REAL
- C array, dimensioned Z(NM,N).
- C
- C On Output
- C
- C A has been reduced further to a quasi-triangular matrix in
- C which all nonzero subdiagonal elements correspond to pairs
- C of complex eigenvalues.
- C
- C B is still in upper triangular form, although its elements
- C have been altered. B(N,1) is unaltered.
- C
- C ALFR and ALFI contain the real and imaginary parts of the
- C diagonal elements of the triangular matrix that would be
- C obtained if A were reduced completely to triangular form
- C by unitary transformations. Non-zero values of ALFI occur
- C in pairs, the first member positive and the second negative.
- C ALFR and ALFI are one-dimensional REAL arrays, dimensioned
- C ALFR(N) and ALFI(N).
- C
- C BETA contains the diagonal elements of the corresponding B,
- C normalized to be real and non-negative. The generalized
- C eigenvalues are then the ratios ((ALFR+I*ALFI)/BETA).
- C BETA is a one-dimensional REAL array, dimensioned BETA(N).
- C
- C Z contains the product of the right hand transformations
- C (for all three steps) if MATZ has been set to .TRUE.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE QZVAL
- C
- INTEGER I,J,N,EN,NA,NM,NN,ISW
- REAL A(NM,*),B(NM,*),ALFR(*),ALFI(*),BETA(*),Z(NM,*)
- REAL C,D,E,R,S,T,AN,A1,A2,BN,CQ,CZ,DI,DR,EI,TI,TR
- REAL U1,U2,V1,V2,A1I,A11,A12,A2I,A21,A22,B11,B12,B22
- REAL SQI,SQR,SSI,SSR,SZI,SZR,A11I,A11R,A12I,A12R
- REAL A22I,A22R,EPSB
- LOGICAL MATZ
- C
- C***FIRST EXECUTABLE STATEMENT QZVAL
- EPSB = B(N,1)
- ISW = 1
- C .......... FIND EIGENVALUES OF QUASI-TRIANGULAR MATRICES.
- C FOR EN=N STEP -1 UNTIL 1 DO -- ..........
- DO 510 NN = 1, N
- EN = N + 1 - NN
- NA = EN - 1
- IF (ISW .EQ. 2) GO TO 505
- IF (EN .EQ. 1) GO TO 410
- IF (A(EN,NA) .NE. 0.0E0) GO TO 420
- C .......... 1-BY-1 BLOCK, ONE REAL ROOT ..........
- 410 ALFR(EN) = A(EN,EN)
- IF (B(EN,EN) .LT. 0.0E0) ALFR(EN) = -ALFR(EN)
- BETA(EN) = ABS(B(EN,EN))
- ALFI(EN) = 0.0E0
- GO TO 510
- C .......... 2-BY-2 BLOCK ..........
- 420 IF (ABS(B(NA,NA)) .LE. EPSB) GO TO 455
- IF (ABS(B(EN,EN)) .GT. EPSB) GO TO 430
- A1 = A(EN,EN)
- A2 = A(EN,NA)
- BN = 0.0E0
- GO TO 435
- 430 AN = ABS(A(NA,NA)) + ABS(A(NA,EN)) + ABS(A(EN,NA))
- 1 + ABS(A(EN,EN))
- BN = ABS(B(NA,NA)) + ABS(B(NA,EN)) + ABS(B(EN,EN))
- A11 = A(NA,NA) / AN
- A12 = A(NA,EN) / AN
- A21 = A(EN,NA) / AN
- A22 = A(EN,EN) / AN
- B11 = B(NA,NA) / BN
- B12 = B(NA,EN) / BN
- B22 = B(EN,EN) / BN
- E = A11 / B11
- EI = A22 / B22
- S = A21 / (B11 * B22)
- T = (A22 - E * B22) / B22
- IF (ABS(E) .LE. ABS(EI)) GO TO 431
- E = EI
- T = (A11 - E * B11) / B11
- 431 C = 0.5E0 * (T - S * B12)
- D = C * C + S * (A12 - E * B12)
- IF (D .LT. 0.0E0) GO TO 480
- C .......... TWO REAL ROOTS.
- C ZERO BOTH A(EN,NA) AND B(EN,NA) ..........
- E = E + (C + SIGN(SQRT(D),C))
- A11 = A11 - E * B11
- A12 = A12 - E * B12
- A22 = A22 - E * B22
- IF (ABS(A11) + ABS(A12) .LT.
- 1 ABS(A21) + ABS(A22)) GO TO 432
- A1 = A12
- A2 = A11
- GO TO 435
- 432 A1 = A22
- A2 = A21
- C .......... CHOOSE AND APPLY REAL Z ..........
- 435 S = ABS(A1) + ABS(A2)
- U1 = A1 / S
- U2 = A2 / S
- R = SIGN(SQRT(U1*U1+U2*U2),U1)
- V1 = -(U1 + R) / R
- V2 = -U2 / R
- U2 = V2 / V1
- C
- DO 440 I = 1, EN
- T = A(I,EN) + U2 * A(I,NA)
- A(I,EN) = A(I,EN) + T * V1
- A(I,NA) = A(I,NA) + T * V2
- T = B(I,EN) + U2 * B(I,NA)
- B(I,EN) = B(I,EN) + T * V1
- B(I,NA) = B(I,NA) + T * V2
- 440 CONTINUE
- C
- IF (.NOT. MATZ) GO TO 450
- C
- DO 445 I = 1, N
- T = Z(I,EN) + U2 * Z(I,NA)
- Z(I,EN) = Z(I,EN) + T * V1
- Z(I,NA) = Z(I,NA) + T * V2
- 445 CONTINUE
- C
- 450 IF (BN .EQ. 0.0E0) GO TO 475
- IF (AN .LT. ABS(E) * BN) GO TO 455
- A1 = B(NA,NA)
- A2 = B(EN,NA)
- GO TO 460
- 455 A1 = A(NA,NA)
- A2 = A(EN,NA)
- C .......... CHOOSE AND APPLY REAL Q ..........
- 460 S = ABS(A1) + ABS(A2)
- IF (S .EQ. 0.0E0) GO TO 475
- U1 = A1 / S
- U2 = A2 / S
- R = SIGN(SQRT(U1*U1+U2*U2),U1)
- V1 = -(U1 + R) / R
- V2 = -U2 / R
- U2 = V2 / V1
- C
- DO 470 J = NA, N
- T = A(NA,J) + U2 * A(EN,J)
- A(NA,J) = A(NA,J) + T * V1
- A(EN,J) = A(EN,J) + T * V2
- T = B(NA,J) + U2 * B(EN,J)
- B(NA,J) = B(NA,J) + T * V1
- B(EN,J) = B(EN,J) + T * V2
- 470 CONTINUE
- C
- 475 A(EN,NA) = 0.0E0
- B(EN,NA) = 0.0E0
- ALFR(NA) = A(NA,NA)
- ALFR(EN) = A(EN,EN)
- IF (B(NA,NA) .LT. 0.0E0) ALFR(NA) = -ALFR(NA)
- IF (B(EN,EN) .LT. 0.0E0) ALFR(EN) = -ALFR(EN)
- BETA(NA) = ABS(B(NA,NA))
- BETA(EN) = ABS(B(EN,EN))
- ALFI(EN) = 0.0E0
- ALFI(NA) = 0.0E0
- GO TO 505
- C .......... TWO COMPLEX ROOTS ..........
- 480 E = E + C
- EI = SQRT(-D)
- A11R = A11 - E * B11
- A11I = EI * B11
- A12R = A12 - E * B12
- A12I = EI * B12
- A22R = A22 - E * B22
- A22I = EI * B22
- IF (ABS(A11R) + ABS(A11I) + ABS(A12R) + ABS(A12I) .LT.
- 1 ABS(A21) + ABS(A22R) + ABS(A22I)) GO TO 482
- A1 = A12R
- A1I = A12I
- A2 = -A11R
- A2I = -A11I
- GO TO 485
- 482 A1 = A22R
- A1I = A22I
- A2 = -A21
- A2I = 0.0E0
- C .......... CHOOSE COMPLEX Z ..........
- 485 CZ = SQRT(A1*A1+A1I*A1I)
- IF (CZ .EQ. 0.0E0) GO TO 487
- SZR = (A1 * A2 + A1I * A2I) / CZ
- SZI = (A1 * A2I - A1I * A2) / CZ
- R = SQRT(CZ*CZ+SZR*SZR+SZI*SZI)
- CZ = CZ / R
- SZR = SZR / R
- SZI = SZI / R
- GO TO 490
- 487 SZR = 1.0E0
- SZI = 0.0E0
- 490 IF (AN .LT. (ABS(E) + EI) * BN) GO TO 492
- A1 = CZ * B11 + SZR * B12
- A1I = SZI * B12
- A2 = SZR * B22
- A2I = SZI * B22
- GO TO 495
- 492 A1 = CZ * A11 + SZR * A12
- A1I = SZI * A12
- A2 = CZ * A21 + SZR * A22
- A2I = SZI * A22
- C .......... CHOOSE COMPLEX Q ..........
- 495 CQ = SQRT(A1*A1+A1I*A1I)
- IF (CQ .EQ. 0.0E0) GO TO 497
- SQR = (A1 * A2 + A1I * A2I) / CQ
- SQI = (A1 * A2I - A1I * A2) / CQ
- R = SQRT(CQ*CQ+SQR*SQR+SQI*SQI)
- CQ = CQ / R
- SQR = SQR / R
- SQI = SQI / R
- GO TO 500
- 497 SQR = 1.0E0
- SQI = 0.0E0
- C .......... COMPUTE DIAGONAL ELEMENTS THAT WOULD RESULT
- C IF TRANSFORMATIONS WERE APPLIED ..........
- 500 SSR = SQR * SZR + SQI * SZI
- SSI = SQR * SZI - SQI * SZR
- I = 1
- TR = CQ * CZ * A11 + CQ * SZR * A12 + SQR * CZ * A21
- 1 + SSR * A22
- TI = CQ * SZI * A12 - SQI * CZ * A21 + SSI * A22
- DR = CQ * CZ * B11 + CQ * SZR * B12 + SSR * B22
- DI = CQ * SZI * B12 + SSI * B22
- GO TO 503
- 502 I = 2
- TR = SSR * A11 - SQR * CZ * A12 - CQ * SZR * A21
- 1 + CQ * CZ * A22
- TI = -SSI * A11 - SQI * CZ * A12 + CQ * SZI * A21
- DR = SSR * B11 - SQR * CZ * B12 + CQ * CZ * B22
- DI = -SSI * B11 - SQI * CZ * B12
- 503 T = TI * DR - TR * DI
- J = NA
- IF (T .LT. 0.0E0) J = EN
- R = SQRT(DR*DR+DI*DI)
- BETA(J) = BN * R
- ALFR(J) = AN * (TR * DR + TI * DI) / R
- ALFI(J) = AN * T / R
- IF (I .EQ. 1) GO TO 502
- 505 ISW = 3 - ISW
- 510 CONTINUE
- C
- RETURN
- END
|