r1updt.f 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. *DECK R1UPDT
  2. SUBROUTINE R1UPDT (M, N, S, LS, U, V, W, SING)
  3. C***BEGIN PROLOGUE R1UPDT
  4. C***SUBSIDIARY
  5. C***PURPOSE Subsidiary to SNSQ and SNSQE
  6. C***LIBRARY SLATEC
  7. C***TYPE SINGLE PRECISION (R1UPDT-S, D1UPDT-D)
  8. C***AUTHOR (UNKNOWN)
  9. C***DESCRIPTION
  10. C
  11. C Given an M by N lower trapezoidal matrix S, an M-vector U,
  12. C and an N-vector V, the problem is to determine an
  13. C orthogonal matrix Q such that
  14. C
  15. C T
  16. C (S + U*V )*Q
  17. C
  18. C is again lower trapezoidal.
  19. C
  20. C This subroutine determines Q as the product of 2*(N - 1)
  21. C transformations
  22. C
  23. C GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1)
  24. C
  25. C where GV(I), GW(I) are Givens rotations in the (I,N) plane
  26. C which eliminate elements in the I-th and N-th planes,
  27. C respectively. Q Itself is not accumulated, rather the
  28. C information to recover the GV, GW rotations is returned.
  29. C
  30. C The subroutine statement is
  31. C
  32. C SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)
  33. C
  34. C where
  35. C
  36. C M is a positive integer input variable set to the number
  37. C of rows of S.
  38. C
  39. C N is a positive integer input variable set to the number
  40. C of columns of S. N must not exceed M.
  41. C
  42. C S is an array of length LS. On input S must contain the lower
  43. C trapezoidal matrix S stored by columns. On output S contains
  44. C the lower trapezoidal matrix produced as described above.
  45. C
  46. C LS is a positive integer input variable not less than
  47. C (N*(2*M-N+1))/2.
  48. C
  49. C U is an input array of length M which must contain the
  50. C vector U.
  51. C
  52. C V is an array of length N. On input V must contain the vector
  53. C V. On output V(I) contains the information necessary to
  54. C recover the Givens rotation GV(I) described above.
  55. C
  56. C W is an output array of length M. W(I) contains information
  57. C necessary to recover the Givens rotation GW(I) described
  58. C above.
  59. C
  60. C SING is a logical output variable. SING is set .TRUE. if any
  61. C of the diagonal elements of the output S are zero. Otherwise
  62. C SING is set .FALSE.
  63. C
  64. C***SEE ALSO SNSQ, SNSQE
  65. C***ROUTINES CALLED R1MACH
  66. C***REVISION HISTORY (YYMMDD)
  67. C 800301 DATE WRITTEN
  68. C 890831 Modified array declarations. (WRB)
  69. C 891214 Prologue converted to Version 4.0 format. (BAB)
  70. C 900326 Removed duplicate information from DESCRIPTION section.
  71. C (WRB)
  72. C 900328 Added TYPE section. (WRB)
  73. C***END PROLOGUE R1UPDT
  74. INTEGER M,N,LS
  75. LOGICAL SING
  76. REAL S(*),U(*),V(*),W(*)
  77. INTEGER I,J,JJ,L,NMJ,NM1
  78. REAL COS,COTAN,GIANT,ONE,P5,P25,SIN,TAN,TAU,TEMP,ZERO
  79. REAL R1MACH
  80. SAVE ONE, P5, P25, ZERO
  81. DATA ONE,P5,P25,ZERO /1.0E0,5.0E-1,2.5E-1,0.0E0/
  82. C***FIRST EXECUTABLE STATEMENT R1UPDT
  83. GIANT = R1MACH(2)
  84. C
  85. C INITIALIZE THE DIAGONAL ELEMENT POINTER.
  86. C
  87. JJ = (N*(2*M - N + 1))/2 - (M - N)
  88. C
  89. C MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W.
  90. C
  91. L = JJ
  92. DO 10 I = N, M
  93. W(I) = S(L)
  94. L = L + 1
  95. 10 CONTINUE
  96. C
  97. C ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR
  98. C IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W.
  99. C
  100. NM1 = N - 1
  101. IF (NM1 .LT. 1) GO TO 70
  102. DO 60 NMJ = 1, NM1
  103. J = N - NMJ
  104. JJ = JJ - (M - J + 1)
  105. W(J) = ZERO
  106. IF (V(J) .EQ. ZERO) GO TO 50
  107. C
  108. C DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
  109. C J-TH ELEMENT OF V.
  110. C
  111. IF (ABS(V(N)) .GE. ABS(V(J))) GO TO 20
  112. COTAN = V(N)/V(J)
  113. SIN = P5/SQRT(P25+P25*COTAN**2)
  114. COS = SIN*COTAN
  115. TAU = ONE
  116. IF (ABS(COS)*GIANT .GT. ONE) TAU = ONE/COS
  117. GO TO 30
  118. 20 CONTINUE
  119. TAN = V(J)/V(N)
  120. COS = P5/SQRT(P25+P25*TAN**2)
  121. SIN = COS*TAN
  122. TAU = SIN
  123. 30 CONTINUE
  124. C
  125. C APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION
  126. C NECESSARY TO RECOVER THE GIVENS ROTATION.
  127. C
  128. V(N) = SIN*V(J) + COS*V(N)
  129. V(J) = TAU
  130. C
  131. C APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W.
  132. C
  133. L = JJ
  134. DO 40 I = J, M
  135. TEMP = COS*S(L) - SIN*W(I)
  136. W(I) = SIN*S(L) + COS*W(I)
  137. S(L) = TEMP
  138. L = L + 1
  139. 40 CONTINUE
  140. 50 CONTINUE
  141. 60 CONTINUE
  142. 70 CONTINUE
  143. C
  144. C ADD THE SPIKE FROM THE RANK 1 UPDATE TO W.
  145. C
  146. DO 80 I = 1, M
  147. W(I) = W(I) + V(N)*U(I)
  148. 80 CONTINUE
  149. C
  150. C ELIMINATE THE SPIKE.
  151. C
  152. SING = .FALSE.
  153. IF (NM1 .LT. 1) GO TO 140
  154. DO 130 J = 1, NM1
  155. IF (W(J) .EQ. ZERO) GO TO 120
  156. C
  157. C DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
  158. C J-TH ELEMENT OF THE SPIKE.
  159. C
  160. IF (ABS(S(JJ)) .GE. ABS(W(J))) GO TO 90
  161. COTAN = S(JJ)/W(J)
  162. SIN = P5/SQRT(P25+P25*COTAN**2)
  163. COS = SIN*COTAN
  164. TAU = ONE
  165. IF (ABS(COS)*GIANT .GT. ONE) TAU = ONE/COS
  166. GO TO 100
  167. 90 CONTINUE
  168. TAN = W(J)/S(JJ)
  169. COS = P5/SQRT(P25+P25*TAN**2)
  170. SIN = COS*TAN
  171. TAU = SIN
  172. 100 CONTINUE
  173. C
  174. C APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W.
  175. C
  176. L = JJ
  177. DO 110 I = J, M
  178. TEMP = COS*S(L) + SIN*W(I)
  179. W(I) = -SIN*S(L) + COS*W(I)
  180. S(L) = TEMP
  181. L = L + 1
  182. 110 CONTINUE
  183. C
  184. C STORE THE INFORMATION NECESSARY TO RECOVER THE
  185. C GIVENS ROTATION.
  186. C
  187. W(J) = TAU
  188. 120 CONTINUE
  189. C
  190. C TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S.
  191. C
  192. IF (S(JJ) .EQ. ZERO) SING = .TRUE.
  193. JJ = JJ + (M - J + 1)
  194. 130 CONTINUE
  195. 140 CONTINUE
  196. C
  197. C MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S.
  198. C
  199. L = JJ
  200. DO 150 I = N, M
  201. S(L) = W(I)
  202. L = L + 1
  203. 150 CONTINUE
  204. IF (S(JJ) .EQ. ZERO) SING = .TRUE.
  205. RETURN
  206. C
  207. C LAST CARD OF SUBROUTINE R1UPDT.
  208. C
  209. END