radb3.f 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. *DECK RADB3
  2. SUBROUTINE RADB3 (IDO, L1, CC, CH, WA1, WA2)
  3. C***BEGIN PROLOGUE RADB3
  4. C***SUBSIDIARY
  5. C***PURPOSE Calculate the fast Fourier transform of subvectors of
  6. C length three.
  7. C***LIBRARY SLATEC (FFTPACK)
  8. C***TYPE SINGLE PRECISION (RADB3-S)
  9. C***AUTHOR Swarztrauber, P. N., (NCAR)
  10. C***ROUTINES CALLED (NONE)
  11. C***REVISION HISTORY (YYMMDD)
  12. C 790601 DATE WRITTEN
  13. C 830401 Modified to use SLATEC library source file format.
  14. C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
  15. C (a) changing dummy array size declarations (1) to (*),
  16. C (b) changing definition of variable TAUI by using
  17. C FORTRAN intrinsic function SQRT instead of a DATA
  18. C statement.
  19. C 881128 Modified by Dick Valent to meet prologue standards.
  20. C 890831 Modified array declarations. (WRB)
  21. C 891214 Prologue converted to Version 4.0 format. (BAB)
  22. C 900402 Added TYPE section. (WRB)
  23. C***END PROLOGUE RADB3
  24. DIMENSION CC(IDO,3,*), CH(IDO,L1,3), WA1(*), WA2(*)
  25. C***FIRST EXECUTABLE STATEMENT RADB3
  26. TAUR = -.5
  27. TAUI = .5*SQRT(3.)
  28. DO 101 K=1,L1
  29. TR2 = CC(IDO,2,K)+CC(IDO,2,K)
  30. CR2 = CC(1,1,K)+TAUR*TR2
  31. CH(1,K,1) = CC(1,1,K)+TR2
  32. CI3 = TAUI*(CC(1,3,K)+CC(1,3,K))
  33. CH(1,K,2) = CR2-CI3
  34. CH(1,K,3) = CR2+CI3
  35. 101 CONTINUE
  36. IF (IDO .EQ. 1) RETURN
  37. IDP2 = IDO+2
  38. IF((IDO-1)/2.LT.L1) GO TO 104
  39. DO 103 K=1,L1
  40. CDIR$ IVDEP
  41. DO 102 I=3,IDO,2
  42. IC = IDP2-I
  43. TR2 = CC(I-1,3,K)+CC(IC-1,2,K)
  44. CR2 = CC(I-1,1,K)+TAUR*TR2
  45. CH(I-1,K,1) = CC(I-1,1,K)+TR2
  46. TI2 = CC(I,3,K)-CC(IC,2,K)
  47. CI2 = CC(I,1,K)+TAUR*TI2
  48. CH(I,K,1) = CC(I,1,K)+TI2
  49. CR3 = TAUI*(CC(I-1,3,K)-CC(IC-1,2,K))
  50. CI3 = TAUI*(CC(I,3,K)+CC(IC,2,K))
  51. DR2 = CR2-CI3
  52. DR3 = CR2+CI3
  53. DI2 = CI2+CR3
  54. DI3 = CI2-CR3
  55. CH(I-1,K,2) = WA1(I-2)*DR2-WA1(I-1)*DI2
  56. CH(I,K,2) = WA1(I-2)*DI2+WA1(I-1)*DR2
  57. CH(I-1,K,3) = WA2(I-2)*DR3-WA2(I-1)*DI3
  58. CH(I,K,3) = WA2(I-2)*DI3+WA2(I-1)*DR3
  59. 102 CONTINUE
  60. 103 CONTINUE
  61. RETURN
  62. 104 DO 106 I=3,IDO,2
  63. IC = IDP2-I
  64. CDIR$ IVDEP
  65. DO 105 K=1,L1
  66. TR2 = CC(I-1,3,K)+CC(IC-1,2,K)
  67. CR2 = CC(I-1,1,K)+TAUR*TR2
  68. CH(I-1,K,1) = CC(I-1,1,K)+TR2
  69. TI2 = CC(I,3,K)-CC(IC,2,K)
  70. CI2 = CC(I,1,K)+TAUR*TI2
  71. CH(I,K,1) = CC(I,1,K)+TI2
  72. CR3 = TAUI*(CC(I-1,3,K)-CC(IC-1,2,K))
  73. CI3 = TAUI*(CC(I,3,K)+CC(IC,2,K))
  74. DR2 = CR2-CI3
  75. DR3 = CR2+CI3
  76. DI2 = CI2+CR3
  77. DI3 = CI2-CR3
  78. CH(I-1,K,2) = WA1(I-2)*DR2-WA1(I-1)*DI2
  79. CH(I,K,2) = WA1(I-2)*DI2+WA1(I-1)*DR2
  80. CH(I-1,K,3) = WA2(I-2)*DR3-WA2(I-1)*DI3
  81. CH(I,K,3) = WA2(I-2)*DI3+WA2(I-1)*DR3
  82. 105 CONTINUE
  83. 106 CONTINUE
  84. RETURN
  85. END