123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- *DECK REDUC2
- SUBROUTINE REDUC2 (NM, N, A, B, DL, IERR)
- C***BEGIN PROLOGUE REDUC2
- C***PURPOSE Reduce a certain generalized symmetric eigenproblem to a
- C standard symmetric eigenproblem using Cholesky
- C factorization.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C1C
- C***TYPE SINGLE PRECISION (REDUC2-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure REDUC2,
- C NUM. MATH. 11, 99-110(1968) by Martin and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 303-314(1971).
- C
- C This subroutine reduces the generalized SYMMETRIC eigenproblems
- C ABx=(LAMBDA)x OR BAy=(LAMBDA)y, where B is POSITIVE DEFINITE,
- C to the standard symmetric eigenproblem using the Cholesky
- C factorization of B.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A and B, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrices A and B. If the Cholesky
- C factor L of B is already available, N should be prefixed
- C with a minus sign. N is an INTEGER variable.
- C
- C A and B contain the real symmetric input matrices. Only
- C the full upper triangles of the matrices need be supplied.
- C If N is negative, the strict lower triangle of B contains,
- C instead, the strict lower triangle of its Cholesky factor L.
- C A and B are two-dimensional REAL arrays, dimensioned A(NM,N)
- C and B(NM,N).
- C
- C DL contains, if N is negative, the diagonal elements of L.
- C DL is a one-dimensional REAL array, dimensioned DL(N).
- C
- C On Output
- C
- C A contains in its full lower triangle the full lower triangle
- C of the symmetric matrix derived from the reduction to the
- C standard form. The strict upper triangle of A is unaltered.
- C
- C B contains in its strict lower triangle the strict lower
- C triangle of its Cholesky factor L. The full upper triangle
- C of B is unaltered.
- C
- C DL contains the diagonal elements of L.
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C 7*N+1 if B is not positive definite.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE REDUC2
- C
- INTEGER I,J,K,N,I1,J1,NM,NN,IERR
- REAL A(NM,*),B(NM,*),DL(*)
- REAL X,Y
- C
- C***FIRST EXECUTABLE STATEMENT REDUC2
- IERR = 0
- NN = ABS(N)
- IF (N .LT. 0) GO TO 100
- C .......... FORM L IN THE ARRAYS B AND DL ..........
- DO 80 I = 1, N
- I1 = I - 1
- C
- DO 80 J = I, N
- X = B(I,J)
- IF (I .EQ. 1) GO TO 40
- C
- DO 20 K = 1, I1
- 20 X = X - B(I,K) * B(J,K)
- C
- 40 IF (J .NE. I) GO TO 60
- IF (X .LE. 0.0E0) GO TO 1000
- Y = SQRT(X)
- DL(I) = Y
- GO TO 80
- 60 B(J,I) = X / Y
- 80 CONTINUE
- C .......... FORM THE LOWER TRIANGLE OF A*L
- C IN THE LOWER TRIANGLE OF THE ARRAY A ..........
- 100 DO 200 I = 1, NN
- I1 = I + 1
- C
- DO 200 J = 1, I
- X = A(J,I) * DL(J)
- IF (J .EQ. I) GO TO 140
- J1 = J + 1
- C
- DO 120 K = J1, I
- 120 X = X + A(K,I) * B(K,J)
- C
- 140 IF (I .EQ. NN) GO TO 180
- C
- DO 160 K = I1, NN
- 160 X = X + A(I,K) * B(K,J)
- C
- 180 A(I,J) = X
- 200 CONTINUE
- C .......... PRE-MULTIPLY BY TRANSPOSE(L) AND OVERWRITE ..........
- DO 300 I = 1, NN
- I1 = I + 1
- Y = DL(I)
- C
- DO 300 J = 1, I
- X = Y * A(I,J)
- IF (I .EQ. NN) GO TO 280
- C
- DO 260 K = I1, NN
- 260 X = X + A(K,J) * B(K,I)
- C
- 280 A(I,J) = X
- 300 CONTINUE
- C
- GO TO 1001
- C .......... SET ERROR -- B IS NOT POSITIVE DEFINITE ..........
- 1000 IERR = 7 * N + 1
- 1001 RETURN
- END
|