123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- *DECK RFFTB1
- SUBROUTINE RFFTB1 (N, C, CH, WA, IFAC)
- C***BEGIN PROLOGUE RFFTB1
- C***PURPOSE Compute the backward fast Fourier transform of a real
- C coefficient array.
- C***LIBRARY SLATEC (FFTPACK)
- C***CATEGORY J1A1
- C***TYPE SINGLE PRECISION (RFFTB1-S, CFFTB1-C)
- C***KEYWORDS FFTPACK, FOURIER TRANSFORM
- C***AUTHOR Swarztrauber, P. N., (NCAR)
- C***DESCRIPTION
- C
- C Subroutine RFFTB1 computes the real periodic sequence from its
- C Fourier coefficients (Fourier synthesis). The transform is defined
- C below at output parameter C.
- C
- C The arrays WA and IFAC which are used by subroutine RFFTB1 must be
- C initialized by calling subroutine RFFTI1.
- C
- C Input Arguments
- C
- C N the length of the array R to be transformed. The method
- C is most efficient when N is a product of small primes.
- C N may change so long as different work arrays are provided.
- C
- C C a real array of length N which contains the sequence
- C to be transformed.
- C
- C CH a real work array of length at least N.
- C
- C WA a real work array which must be dimensioned at least N.
- C
- C IFAC an integer work array which must be dimensioned at least 15.
- C
- C The WA and IFAC arrays must be initialized by calling
- C subroutine RFFTI1, and different WA and IFAC arrays must be
- C used for each different value of N. This initialization
- C does not have to be repeated so long as N remains unchanged.
- C Thus subsequent transforms can be obtained faster than the
- C first. The same WA and IFAC arrays can be used by RFFTF1
- C and RFFTB1.
- C
- C Output Argument
- C
- C C For N even and for I = 1,...,N
- C
- C C(I) = C(1)+(-1)**(I-1)*C(N)
- C
- C plus the sum from K=2 to K=N/2 of
- C
- C 2.*C(2*K-2)*COS((K-1)*(I-1)*2*PI/N)
- C
- C -2.*C(2*K-1)*SIN((K-1)*(I-1)*2*PI/N)
- C
- C For N odd and for I = 1,...,N
- C
- C C(I) = C(1) plus the sum from K=2 to K=(N+1)/2 of
- C
- C 2.*C(2*K-2)*COS((K-1)*(I-1)*2*PI/N)
- C
- C -2.*C(2*K-1)*SIN((K-1)*(I-1)*2*PI/N)
- C
- C Notes: This transform is unnormalized since a call of RFFTF1
- C followed by a call of RFFTB1 will multiply the input
- C sequence by N.
- C
- C WA and IFAC contain initialization calculations which must
- C not be destroyed between calls of subroutine RFFTF1 or
- C RFFTB1.
- C
- C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
- C Computations (G. Rodrigue, ed.), Academic Press,
- C 1982, pp. 51-83.
- C***ROUTINES CALLED RADB2, RADB3, RADB4, RADB5, RADBG
- C***REVISION HISTORY (YYMMDD)
- C 790601 DATE WRITTEN
- C 830401 Modified to use SLATEC library source file format.
- C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
- C changing dummy array size declarations (1) to (*).
- C 881128 Modified by Dick Valent to meet prologue standards.
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900131 Routine changed from subsidiary to user-callable. (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE RFFTB1
- DIMENSION CH(*), C(*), WA(*), IFAC(*)
- C***FIRST EXECUTABLE STATEMENT RFFTB1
- NF = IFAC(2)
- NA = 0
- L1 = 1
- IW = 1
- DO 116 K1=1,NF
- IP = IFAC(K1+2)
- L2 = IP*L1
- IDO = N/L2
- IDL1 = IDO*L1
- IF (IP .NE. 4) GO TO 103
- IX2 = IW+IDO
- IX3 = IX2+IDO
- IF (NA .NE. 0) GO TO 101
- CALL RADB4 (IDO,L1,C,CH,WA(IW),WA(IX2),WA(IX3))
- GO TO 102
- 101 CALL RADB4 (IDO,L1,CH,C,WA(IW),WA(IX2),WA(IX3))
- 102 NA = 1-NA
- GO TO 115
- 103 IF (IP .NE. 2) GO TO 106
- IF (NA .NE. 0) GO TO 104
- CALL RADB2 (IDO,L1,C,CH,WA(IW))
- GO TO 105
- 104 CALL RADB2 (IDO,L1,CH,C,WA(IW))
- 105 NA = 1-NA
- GO TO 115
- 106 IF (IP .NE. 3) GO TO 109
- IX2 = IW+IDO
- IF (NA .NE. 0) GO TO 107
- CALL RADB3 (IDO,L1,C,CH,WA(IW),WA(IX2))
- GO TO 108
- 107 CALL RADB3 (IDO,L1,CH,C,WA(IW),WA(IX2))
- 108 NA = 1-NA
- GO TO 115
- 109 IF (IP .NE. 5) GO TO 112
- IX2 = IW+IDO
- IX3 = IX2+IDO
- IX4 = IX3+IDO
- IF (NA .NE. 0) GO TO 110
- CALL RADB5 (IDO,L1,C,CH,WA(IW),WA(IX2),WA(IX3),WA(IX4))
- GO TO 111
- 110 CALL RADB5 (IDO,L1,CH,C,WA(IW),WA(IX2),WA(IX3),WA(IX4))
- 111 NA = 1-NA
- GO TO 115
- 112 IF (NA .NE. 0) GO TO 113
- CALL RADBG (IDO,IP,L1,IDL1,C,C,C,CH,CH,WA(IW))
- GO TO 114
- 113 CALL RADBG (IDO,IP,L1,IDL1,CH,CH,CH,C,C,WA(IW))
- 114 IF (IDO .EQ. 1) NA = 1-NA
- 115 L1 = L2
- IW = IW+(IP-1)*IDO
- 116 CONTINUE
- IF (NA .EQ. 0) RETURN
- DO 117 I=1,N
- C(I) = CH(I)
- 117 CONTINUE
- RETURN
- END
|