123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- *DECK RFFTF1
- SUBROUTINE RFFTF1 (N, C, CH, WA, IFAC)
- C***BEGIN PROLOGUE RFFTF1
- C***PURPOSE Compute the forward transform of a real, periodic sequence.
- C***LIBRARY SLATEC (FFTPACK)
- C***CATEGORY J1A1
- C***TYPE SINGLE PRECISION (RFFTF1-S, CFFTF1-C)
- C***KEYWORDS FFTPACK, FOURIER TRANSFORM
- C***AUTHOR Swarztrauber, P. N., (NCAR)
- C***DESCRIPTION
- C
- C Subroutine RFFTF1 computes the Fourier coefficients of a real
- C periodic sequence (Fourier analysis). The transform is defined
- C below at output parameter C.
- C
- C The arrays WA and IFAC which are used by subroutine RFFTB1 must be
- C initialized by calling subroutine RFFTI1.
- C
- C Input Arguments
- C
- C N the length of the array R to be transformed. The method
- C is most efficient when N is a product of small primes.
- C N may change so long as different work arrays are provided.
- C
- C C a real array of length N which contains the sequence
- C to be transformed.
- C
- C CH a real work array of length at least N.
- C
- C WA a real work array which must be dimensioned at least N.
- C
- C IFAC an integer work array which must be dimensioned at least 15.
- C
- C The WA and IFAC arrays must be initialized by calling
- C subroutine RFFTI1, and different WA and IFAC arrays must be
- C used for each different value of N. This initialization
- C does not have to be repeated so long as N remains unchanged.
- C Thus subsequent transforms can be obtained faster than the
- C first. The same WA and IFAC arrays can be used by RFFTF1
- C and RFFTB1.
- C
- C Output Argument
- C
- C C C(1) = the sum from I=1 to I=N of R(I)
- C
- C If N is even set L = N/2; if N is odd set L = (N+1)/2
- C
- C then for K = 2,...,L
- C
- C C(2*K-2) = the sum from I = 1 to I = N of
- C
- C C(I)*COS((K-1)*(I-1)*2*PI/N)
- C
- C C(2*K-1) = the sum from I = 1 to I = N of
- C
- C -C(I)*SIN((K-1)*(I-1)*2*PI/N)
- C
- C If N is even
- C
- C C(N) = the sum from I = 1 to I = N of
- C
- C (-1)**(I-1)*C(I)
- C
- C Notes: This transform is unnormalized since a call of RFFTF1
- C followed by a call of RFFTB1 will multiply the input
- C sequence by N.
- C
- C WA and IFAC contain initialization calculations which must
- C not be destroyed between calls of subroutine RFFTF1 or
- C RFFTB1.
- C
- C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
- C Computations (G. Rodrigue, ed.), Academic Press,
- C 1982, pp. 51-83.
- C***ROUTINES CALLED RADF2, RADF3, RADF4, RADF5, RADFG
- C***REVISION HISTORY (YYMMDD)
- C 790601 DATE WRITTEN
- C 830401 Modified to use SLATEC library source file format.
- C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
- C changing dummy array size declarations (1) to (*).
- C 881128 Modified by Dick Valent to meet prologue standards.
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900131 Routine changed from subsidiary to user-callable. (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE RFFTF1
- DIMENSION CH(*), C(*), WA(*), IFAC(*)
- C***FIRST EXECUTABLE STATEMENT RFFTF1
- NF = IFAC(2)
- NA = 1
- L2 = N
- IW = N
- DO 111 K1=1,NF
- KH = NF-K1
- IP = IFAC(KH+3)
- L1 = L2/IP
- IDO = N/L2
- IDL1 = IDO*L1
- IW = IW-(IP-1)*IDO
- NA = 1-NA
- IF (IP .NE. 4) GO TO 102
- IX2 = IW+IDO
- IX3 = IX2+IDO
- IF (NA .NE. 0) GO TO 101
- CALL RADF4 (IDO,L1,C,CH,WA(IW),WA(IX2),WA(IX3))
- GO TO 110
- 101 CALL RADF4 (IDO,L1,CH,C,WA(IW),WA(IX2),WA(IX3))
- GO TO 110
- 102 IF (IP .NE. 2) GO TO 104
- IF (NA .NE. 0) GO TO 103
- CALL RADF2 (IDO,L1,C,CH,WA(IW))
- GO TO 110
- 103 CALL RADF2 (IDO,L1,CH,C,WA(IW))
- GO TO 110
- 104 IF (IP .NE. 3) GO TO 106
- IX2 = IW+IDO
- IF (NA .NE. 0) GO TO 105
- CALL RADF3 (IDO,L1,C,CH,WA(IW),WA(IX2))
- GO TO 110
- 105 CALL RADF3 (IDO,L1,CH,C,WA(IW),WA(IX2))
- GO TO 110
- 106 IF (IP .NE. 5) GO TO 108
- IX2 = IW+IDO
- IX3 = IX2+IDO
- IX4 = IX3+IDO
- IF (NA .NE. 0) GO TO 107
- CALL RADF5 (IDO,L1,C,CH,WA(IW),WA(IX2),WA(IX3),WA(IX4))
- GO TO 110
- 107 CALL RADF5 (IDO,L1,CH,C,WA(IW),WA(IX2),WA(IX3),WA(IX4))
- GO TO 110
- 108 IF (IDO .EQ. 1) NA = 1-NA
- IF (NA .NE. 0) GO TO 109
- CALL RADFG (IDO,IP,L1,IDL1,C,C,C,CH,CH,WA(IW))
- NA = 1
- GO TO 110
- 109 CALL RADFG (IDO,IP,L1,IDL1,CH,CH,CH,C,C,WA(IW))
- NA = 0
- 110 L2 = L1
- 111 CONTINUE
- IF (NA .EQ. 1) RETURN
- DO 112 I=1,N
- C(I) = CH(I)
- 112 CONTINUE
- RETURN
- END
|