123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- *DECK RGG
- SUBROUTINE RGG (NM, N, A, B, ALFR, ALFI, BETA, MATZ, Z, IERR)
- C***BEGIN PROLOGUE RGG
- C***PURPOSE Compute the eigenvalues and eigenvectors for a real
- C generalized eigenproblem.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4B2
- C***TYPE SINGLE PRECISION (RGG-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine calls the recommended sequence of
- C subroutines from the eigensystem subroutine package (EISPACK)
- C to find the eigenvalues and eigenvectors (if desired)
- C for the REAL GENERAL GENERALIZED eigenproblem Ax = (LAMBDA)Bx.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A, B, and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrices A and B. N is an INTEGER
- C variable. N must be less than or equal to NM.
- C
- C A contains a real general matrix. A is a two-dimensional
- C REAL array, dimensioned A(NM,N).
- C
- C B contains a real general matrix. B is a two-dimensional
- C REAL array, dimensioned B(NM,N).
- C
- C MATZ is an INTEGER variable set equal to zero if only
- C eigenvalues are desired. Otherwise, it is set to any
- C non-zero integer for both eigenvalues and eigenvectors.
- C
- C On Output
- C
- C A and B have been destroyed.
- C
- C ALFR and ALFI contain the real and imaginary parts,
- C respectively, of the numerators of the eigenvalues.
- C ALFR and ALFI are one-dimensional REAL arrays,
- C dimensioned ALFR(N) and ALFI(N).
- C
- C BETA contains the denominators of the eigenvalues,
- C which are thus given by the ratios (ALFR+I*ALFI)/BETA.
- C Complex conjugate pairs of eigenvalues appear consecutively
- C with the eigenvalue having the positive imaginary part first.
- C BETA is a one-dimensional REAL array, dimensioned BETA(N).
- C
- C Z contains the real and imaginary parts of the eigenvectors
- C if MATZ is not zero. If the J-th eigenvalue is real, the
- C J-th column of Z contains its eigenvector. If the J-th
- C eigenvalue is complex with positive imaginary part, the
- C J-th and (J+1)-th columns of Z contain the real and
- C imaginary parts of its eigenvector. The conjugate of this
- C vector is the eigenvector for the conjugate eigenvalue.
- C Z is a two-dimensional REAL array, dimensioned Z(NM,N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C 10*N if N is greater than NM,
- C J if the J-th eigenvalue has not been
- C determined after a total of 30*N iterations.
- C The eigenvalues should be correct for indices
- C IERR+1, IERR+2, ..., N, but no eigenvectors are
- C computed.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED QZHES, QZIT, QZVAL, QZVEC
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE RGG
- C
- INTEGER N,NM,IERR,MATZ
- REAL A(NM,*),B(NM,*),ALFR(*),ALFI(*),BETA(*),Z(NM,*)
- LOGICAL TF
- C
- C***FIRST EXECUTABLE STATEMENT RGG
- IF (N .LE. NM) GO TO 10
- IERR = 10 * N
- GO TO 50
- C
- 10 IF (MATZ .NE. 0) GO TO 20
- C .......... FIND EIGENVALUES ONLY ..........
- TF = .FALSE.
- CALL QZHES(NM,N,A,B,TF,Z)
- CALL QZIT(NM,N,A,B,0.0E0,TF,Z,IERR)
- CALL QZVAL(NM,N,A,B,ALFR,ALFI,BETA,TF,Z)
- GO TO 50
- C .......... FIND BOTH EIGENVALUES AND EIGENVECTORS ..........
- 20 TF = .TRUE.
- CALL QZHES(NM,N,A,B,TF,Z)
- CALL QZIT(NM,N,A,B,0.0E0,TF,Z,IERR)
- CALL QZVAL(NM,N,A,B,ALFR,ALFI,BETA,TF,Z)
- IF (IERR .NE. 0) GO TO 50
- CALL QZVEC(NM,N,A,B,ALFR,ALFI,BETA,Z)
- 50 RETURN
- END
|