12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- *DECK RST
- SUBROUTINE RST (NM, N, W, E, MATZ, Z, IERR)
- C***BEGIN PROLOGUE RST
- C***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
- C of a real symmetric tridiagonal matrix.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4A5
- C***TYPE SINGLE PRECISION (RST-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine calls the recommended sequence of
- C subroutines from the eigensystem subroutine package (EISPACK)
- C to find the eigenvalues and eigenvectors (if desired)
- C of a REAL SYMMETRIC TRIDIAGONAL matrix.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, Z, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C W contains the diagonal elements of the real symmetric
- C tridiagonal matrix. W is a one-dimensional REAL array,
- C dimensioned W(N).
- C
- C E contains the subdiagonal elements of the matrix in its last
- C N-1 positions. E(1) is arbitrary. E is a one-dimensional
- C REAL array, dimensioned E(N).
- C
- C MATZ is an INTEGER variable set equal to zero if only
- C eigenvalues are desired. Otherwise, it is set to any
- C non-zero integer for both eigenvalues and eigenvectors.
- C
- C On Output
- C
- C W contains the eigenvalues in ascending order.
- C
- C Z contains the eigenvectors if MATZ is not zero. The eigen-
- C vectors are orthonormal. Z is a two-dimensional REAL array,
- C dimensioned Z(NM,N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C 10*N if N is greater than NM,
- C J if the J-th eigenvalue has not been
- C determined after 30 iterations.
- C The eigenvalues and eigenvectors in the W and Z
- C arrays should be correct for indices
- C 1, 2, ..., IERR-1.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED IMTQL1, IMTQL2
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE RST
- C
- INTEGER I,J,N,NM,IERR,MATZ
- REAL W(*),E(*),Z(NM,*)
- C
- C***FIRST EXECUTABLE STATEMENT RST
- IF (N .LE. NM) GO TO 10
- IERR = 10 * N
- GO TO 50
- C
- 10 IF (MATZ .NE. 0) GO TO 20
- C .......... FIND EIGENVALUES ONLY ..........
- CALL IMTQL1(N,W,E,IERR)
- GO TO 50
- C .......... FIND BOTH EIGENVALUES AND EIGENVECTORS ..........
- 20 DO 40 I = 1, N
- C
- DO 30 J = 1, N
- Z(J,I) = 0.0E0
- 30 CONTINUE
- C
- Z(I,I) = 1.0E0
- 40 CONTINUE
- C
- CALL IMTQL2(NM,N,W,E,Z,IERR)
- 50 RETURN
- END
|