sbolsm.f 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185
  1. *DECK SBOLSM
  2. SUBROUTINE SBOLSM (W, MDW, MINPUT, NCOLS, BL, BU, IND, IOPT, X,
  3. + RNORM, MODE, RW, WW, SCL, IBASIS, IBB)
  4. C***BEGIN PROLOGUE SBOLSM
  5. C***SUBSIDIARY
  6. C***PURPOSE Subsidiary to SBOCLS and SBOLS
  7. C***LIBRARY SLATEC
  8. C***TYPE SINGLE PRECISION (SBOLSM-S, DBOLSM-D)
  9. C***AUTHOR (UNKNOWN)
  10. C***DESCRIPTION
  11. C
  12. C Solve E*X = F (least squares sense) with bounds on
  13. C selected X values.
  14. C The user must have DIMENSION statements of the form:
  15. C
  16. C DIMENSION W(MDW,NCOLS+1), BL(NCOLS), BU(NCOLS),
  17. C * X(NCOLS+NX), RW(NCOLS), WW(NCOLS), SCL(NCOLS)
  18. C INTEGER IND(NCOLS), IOPT(1+NI), IBASIS(NCOLS), IBB(NCOLS)
  19. C
  20. C (Here NX=number of extra locations required for options 1,...,7;
  21. C NX=0 for no options; here NI=number of extra locations possibly
  22. C required for options 1-7; NI=0 for no options; NI=14 if all the
  23. C options are simultaneously in use.)
  24. C
  25. C INPUT
  26. C -----
  27. C
  28. C --------------------
  29. C W(MDW,*),MINPUT,NCOLS
  30. C --------------------
  31. C The array W(*,*) contains the matrix [E:F] on entry. The matrix
  32. C [E:F] has MINPUT rows and NCOLS+1 columns. This data is placed in
  33. C the array W(*,*) with E occupying the first NCOLS columns and the
  34. C right side vector F in column NCOLS+1. The row dimension, MDW, of
  35. C the array W(*,*) must satisfy the inequality MDW .ge. MINPUT.
  36. C Other values of MDW are errors. The values of MINPUT and NCOLS
  37. C must be positive. Other values are errors.
  38. C
  39. C ------------------
  40. C BL(*),BU(*),IND(*)
  41. C ------------------
  42. C These arrays contain the information about the bounds that the
  43. C solution values are to satisfy. The value of IND(J) tells the
  44. C type of bound and BL(J) and BU(J) give the explicit values for
  45. C the respective upper and lower bounds.
  46. C
  47. C 1. For IND(J)=1, require X(J) .ge. BL(J).
  48. C 2. For IND(J)=2, require X(J) .le. BU(J).
  49. C 3. For IND(J)=3, require X(J) .ge. BL(J) and
  50. C X(J) .le. BU(J).
  51. C 4. For IND(J)=4, no bounds on X(J) are required.
  52. C The values of BL(*),BL(*) are modified by the subprogram. Values
  53. C other than 1,2,3 or 4 for IND(J) are errors. In the case IND(J)=3
  54. C (upper and lower bounds) the condition BL(J) .gt. BU(J) is an
  55. C error.
  56. C
  57. C -------
  58. C IOPT(*)
  59. C -------
  60. C This is the array where the user can specify nonstandard options
  61. C for SBOLSM. Most of the time this feature can be ignored by
  62. C setting the input value IOPT(1)=99. Occasionally users may have
  63. C needs that require use of the following subprogram options. For
  64. C details about how to use the options see below: IOPT(*) CONTENTS.
  65. C
  66. C Option Number Brief Statement of Purpose
  67. C ----- ------ ----- --------- -- -------
  68. C 1 Move the IOPT(*) processing pointer.
  69. C 2 Change rank determination tolerance.
  70. C 3 Change blow-up factor that determines the
  71. C size of variables being dropped from active
  72. C status.
  73. C 4 Reset the maximum number of iterations to use
  74. C in solving the problem.
  75. C 5 The data matrix is triangularized before the
  76. C problem is solved whenever (NCOLS/MINPUT) .lt.
  77. C FAC. Change the value of FAC.
  78. C 6 Redefine the weighting matrix used for
  79. C linear independence checking.
  80. C 7 Debug output is desired.
  81. C 99 No more options to change.
  82. C
  83. C ----
  84. C X(*)
  85. C ----
  86. C This array is used to pass data associated with options 1,2,3 and
  87. C 5. Ignore this input parameter if none of these options are used.
  88. C Otherwise see below: IOPT(*) CONTENTS.
  89. C
  90. C ----------------
  91. C IBASIS(*),IBB(*)
  92. C ----------------
  93. C These arrays must be initialized by the user. The values
  94. C IBASIS(J)=J, J=1,...,NCOLS
  95. C IBB(J) =1, J=1,...,NCOLS
  96. C are appropriate except when using nonstandard features.
  97. C
  98. C ------
  99. C SCL(*)
  100. C ------
  101. C This is the array of scaling factors to use on the columns of the
  102. C matrix E. These values must be defined by the user. To suppress
  103. C any column scaling set SCL(J)=1.0, J=1,...,NCOLS.
  104. C
  105. C OUTPUT
  106. C ------
  107. C
  108. C ----------
  109. C X(*),RNORM
  110. C ----------
  111. C The array X(*) contains a solution (if MODE .ge. 0 or .eq. -22)
  112. C for the constrained least squares problem. The value RNORM is the
  113. C minimum residual vector length.
  114. C
  115. C ----
  116. C MODE
  117. C ----
  118. C The sign of mode determines whether the subprogram has completed
  119. C normally, or encountered an error condition or abnormal status.
  120. C A value of MODE .ge. 0 signifies that the subprogram has completed
  121. C normally. The value of MODE (.ge. 0) is the number of variables
  122. C in an active status: not at a bound nor at the value ZERO, for
  123. C the case of free variables. A negative value of MODE will be one
  124. C of the 18 cases -38,-37,...,-22, or -1. Values .lt. -1 correspond
  125. C to an abnormal completion of the subprogram. To understand the
  126. C abnormal completion codes see below: ERROR MESSAGES for SBOLSM
  127. C An approximate solution will be returned to the user only when
  128. C maximum iterations is reached, MODE=-22.
  129. C
  130. C -----------
  131. C RW(*),WW(*)
  132. C -----------
  133. C These are working arrays each with NCOLS entries. The array RW(*)
  134. C contains the working (scaled, nonactive) solution values. The
  135. C array WW(*) contains the working (scaled, active) gradient vector
  136. C values.
  137. C
  138. C ----------------
  139. C IBASIS(*),IBB(*)
  140. C ----------------
  141. C These arrays contain information about the status of the solution
  142. C when MODE .ge. 0. The indices IBASIS(K), K=1,...,MODE, show the
  143. C nonactive variables; indices IBASIS(K), K=MODE+1,..., NCOLS are
  144. C the active variables. The value (IBB(J)-1) is the number of times
  145. C variable J was reflected from its upper bound. (Normally the user
  146. C can ignore these parameters.)
  147. C
  148. C IOPT(*) CONTENTS
  149. C ------- --------
  150. C The option array allows a user to modify internal variables in
  151. C the subprogram without recompiling the source code. A central
  152. C goal of the initial software design was to do a good job for most
  153. C people. Thus the use of options will be restricted to a select
  154. C group of users. The processing of the option array proceeds as
  155. C follows: a pointer, here called LP, is initially set to the value
  156. C 1. The value is updated as the options are processed. At the
  157. C pointer position the option number is extracted and used for
  158. C locating other information that allows for options to be changed.
  159. C The portion of the array IOPT(*) that is used for each option is
  160. C fixed; the user and the subprogram both know how many locations
  161. C are needed for each option. A great deal of error checking is
  162. C done by the subprogram on the contents of the option array.
  163. C Nevertheless it is still possible to give the subprogram optional
  164. C input that is meaningless. For example, some of the options use
  165. C the location X(NCOLS+IOFF) for passing data. The user must manage
  166. C the allocation of these locations when more than one piece of
  167. C option data is being passed to the subprogram.
  168. C
  169. C 1
  170. C -
  171. C Move the processing pointer (either forward or backward) to the
  172. C location IOPT(LP+1). The processing pointer is moved to location
  173. C LP+2 of IOPT(*) in case IOPT(LP)=-1. For example to skip over
  174. C locations 3,...,NCOLS+2 of IOPT(*),
  175. C
  176. C IOPT(1)=1
  177. C IOPT(2)=NCOLS+3
  178. C (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
  179. C IOPT(NCOLS+3)=99
  180. C CALL SBOLSM
  181. C
  182. C CAUTION: Misuse of this option can yield some very hard-to-find
  183. C bugs. Use it with care.
  184. C
  185. C 2
  186. C -
  187. C The algorithm that solves the bounded least squares problem
  188. C iteratively drops columns from the active set. This has the
  189. C effect of joining a new column vector to the QR factorization of
  190. C the rectangular matrix consisting of the partially triangularized
  191. C nonactive columns. After triangularizing this matrix a test is
  192. C made on the size of the pivot element. The column vector is
  193. C rejected as dependent if the magnitude of the pivot element is
  194. C .le. TOL* magnitude of the column in components strictly above
  195. C the pivot element. Nominally the value of this (rank) tolerance
  196. C is TOL = SQRT(R1MACH(4)). To change only the value of TOL, for
  197. C example,
  198. C
  199. C X(NCOLS+1)=TOL
  200. C IOPT(1)=2
  201. C IOPT(2)=1
  202. C IOPT(3)=99
  203. C CALL SBOLSM
  204. C
  205. C Generally, if LP is the processing pointer for IOPT(*),
  206. C
  207. C X(NCOLS+IOFF)=TOL
  208. C IOPT(LP)=2
  209. C IOPT(LP+1)=IOFF
  210. C .
  211. C CALL SBOLSM
  212. C
  213. C The required length of IOPT(*) is increased by 2 if option 2 is
  214. C used; The required length of X(*) is increased by 1. A value of
  215. C IOFF .le. 0 is an error. A value of TOL .le. R1MACH(4) gives a
  216. C warning message; it is not considered an error.
  217. C
  218. C 3
  219. C -
  220. C A solution component is left active (not used) if, roughly
  221. C speaking, it seems too large. Mathematically the new component is
  222. C left active if the magnitude is .ge.((vector norm of F)/(matrix
  223. C norm of E))/BLOWUP. Nominally the factor BLOWUP = SQRT(R1MACH(4)).
  224. C To change only the value of BLOWUP, for example,
  225. C
  226. C X(NCOLS+2)=BLOWUP
  227. C IOPT(1)=3
  228. C IOPT(2)=2
  229. C IOPT(3)=99
  230. C CALL SBOLSM
  231. C
  232. C Generally, if LP is the processing pointer for IOPT(*),
  233. C
  234. C X(NCOLS+IOFF)=BLOWUP
  235. C IOPT(LP)=3
  236. C IOPT(LP+1)=IOFF
  237. C .
  238. C CALL SBOLSM
  239. C
  240. C The required length of IOPT(*) is increased by 2 if option 3 is
  241. C used; the required length of X(*) is increased by 1. A value of
  242. C IOFF .le. 0 is an error. A value of BLOWUP .le. 0.0 is an error.
  243. C
  244. C 4
  245. C -
  246. C Normally the algorithm for solving the bounded least squares
  247. C problem requires between NCOLS/3 and NCOLS drop-add steps to
  248. C converge. (this remark is based on examining a small number of
  249. C test cases.) The amount of arithmetic for such problems is
  250. C typically about twice that required for linear least squares if
  251. C there are no bounds and if plane rotations are used in the
  252. C solution method. Convergence of the algorithm, while
  253. C mathematically certain, can be much slower than indicated. To
  254. C avoid this potential but unlikely event ITMAX drop-add steps are
  255. C permitted. Nominally ITMAX=5*(MAX(MINPUT,NCOLS)). To change the
  256. C value of ITMAX, for example,
  257. C
  258. C IOPT(1)=4
  259. C IOPT(2)=ITMAX
  260. C IOPT(3)=99
  261. C CALL SBOLSM
  262. C
  263. C Generally, if LP is the processing pointer for IOPT(*),
  264. C
  265. C IOPT(LP)=4
  266. C IOPT(LP+1)=ITMAX
  267. C .
  268. C CALL SBOLSM
  269. C
  270. C The value of ITMAX must be .gt. 0. Other values are errors. Use
  271. C of this option increases the required length of IOPT(*) by 2.
  272. C
  273. C 5
  274. C -
  275. C For purposes of increased efficiency the MINPUT by NCOLS+1 data
  276. C matrix [E:F] is triangularized as a first step whenever MINPUT
  277. C satisfies FAC*MINPUT .gt. NCOLS. Nominally FAC=0.75. To change the
  278. C value of FAC,
  279. C
  280. C X(NCOLS+3)=FAC
  281. C IOPT(1)=5
  282. C IOPT(2)=3
  283. C IOPT(3)=99
  284. C CALL SBOLSM
  285. C
  286. C Generally, if LP is the processing pointer for IOPT(*),
  287. C
  288. C X(NCOLS+IOFF)=FAC
  289. C IOPT(LP)=5
  290. C IOPT(LP+1)=IOFF
  291. C .
  292. C CALL SBOLSM
  293. C
  294. C The value of FAC must be nonnegative. Other values are errors.
  295. C Resetting FAC=0.0 suppresses the initial triangularization step.
  296. C Use of this option increases the required length of IOPT(*) by 2;
  297. C The required length of of X(*) is increased by 1.
  298. C
  299. C 6
  300. C -
  301. C The norm used in testing the magnitudes of the pivot element
  302. C compared to the mass of the column above the pivot line can be
  303. C changed. The type of change that this option allows is to weight
  304. C the components with an index larger than MVAL by the parameter
  305. C WT. Normally MVAL=0 and WT=1. To change both the values MVAL and
  306. C WT, where LP is the processing pointer for IOPT(*),
  307. C
  308. C X(NCOLS+IOFF)=WT
  309. C IOPT(LP)=6
  310. C IOPT(LP+1)=IOFF
  311. C IOPT(LP+2)=MVAL
  312. C
  313. C Use of this option increases the required length of IOPT(*) by 3.
  314. C The length of X(*) is increased by 1. Values of MVAL must be
  315. C nonnegative and not greater than MINPUT. Other values are errors.
  316. C The value of WT must be positive. Any other value is an error. If
  317. C either error condition is present a message will be printed.
  318. C
  319. C 7
  320. C -
  321. C Debug output, showing the detailed add-drop steps for the
  322. C constrained least squares problem, is desired. This option is
  323. C intended to be used to locate suspected bugs.
  324. C
  325. C 99
  326. C --
  327. C There are no more options to change.
  328. C
  329. C The values for options are 1,...,7,99, and are the only ones
  330. C permitted. Other values are errors. Options -99,-1,...,-7 mean
  331. C that the repective options 99,1,...,7 are left at their default
  332. C values. An example is the option to modify the (rank) tolerance:
  333. C
  334. C X(NCOLS+1)=TOL
  335. C IOPT(1)=-2
  336. C IOPT(2)=1
  337. C IOPT(3)=99
  338. C
  339. C Error Messages for SBOLSM
  340. C ----- -------- --- ---------
  341. C -22 MORE THAN ITMAX = ... ITERATIONS SOLVING BOUNDED LEAST
  342. C SQUARES PROBLEM.
  343. C
  344. C -23 THE OPTION NUMBER = ... IS NOT DEFINED.
  345. C
  346. C -24 THE OFFSET = ... BEYOND POSTION NCOLS = ... MUST BE POSITIVE
  347. C FOR OPTION NUMBER 2.
  348. C
  349. C -25 THE TOLERANCE FOR RANK DETERMINATION = ... IS LESS THAN
  350. C MACHINE PRECISION = ....
  351. C
  352. C -26 THE OFFSET = ... BEYOND POSITION NCOLS = ... MUST BE POSTIVE
  353. C FOR OPTION NUMBER 3.
  354. C
  355. C -27 THE RECIPROCAL OF THE BLOW-UP FACTOR FOR REJECTING VARIABLES
  356. C MUST BE POSITIVE. NOW = ....
  357. C
  358. C -28 THE MAXIMUM NUMBER OF ITERATIONS = ... MUST BE POSITIVE.
  359. C
  360. C -29 THE OFFSET = ... BEYOND POSITION NCOLS = ... MUST BE POSTIVE
  361. C FOR OPTION NUMBER 5.
  362. C
  363. C -30 THE FACTOR (NCOLS/MINPUT) WHERE PRETRIANGULARIZING IS
  364. C PERFORMED MUST BE NONNEGATIVE. NOW = ....
  365. C
  366. C -31 THE NUMBER OF ROWS = ... MUST BE POSITIVE.
  367. C
  368. C -32 THE NUMBER OF COLUMNS = ... MUST BE POSTIVE.
  369. C
  370. C -33 THE ROW DIMENSION OF W(,) = ... MUST BE .GE. THE NUMBER OF
  371. C ROWS = ....
  372. C
  373. C -34 FOR J = ... THE CONSTRAINT INDICATOR MUST BE 1-4.
  374. C
  375. C -35 FOR J = ... THE LOWER BOUND = ... IS .GT. THE UPPER BOUND =
  376. C ....
  377. C
  378. C -36 THE INPUT ORDER OF COLUMNS = ... IS NOT BETWEEN 1 AND NCOLS
  379. C = ....
  380. C
  381. C -37 THE BOUND POLARITY FLAG IN COMPONENT J = ... MUST BE
  382. C POSITIVE. NOW = ....
  383. C
  384. C -38 THE ROW SEPARATOR TO APPLY WEIGHTING (...) MUST LIE BETWEEN
  385. C 0 AND MINPUT = .... WEIGHT = ... MUST BE POSITIVE.
  386. C
  387. C***SEE ALSO SBOCLS, SBOLS
  388. C***ROUTINES CALLED IVOUT, R1MACH, SAXPY, SCOPY, SDOT, SMOUT, SNRM2,
  389. C SROT, SROTG, SSWAP, SVOUT, XERMSG
  390. C***REVISION HISTORY (YYMMDD)
  391. C 821220 DATE WRITTEN
  392. C 891214 Prologue converted to Version 4.0 format. (BAB)
  393. C 900328 Added TYPE section. (WRB)
  394. C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
  395. C 920422 Fixed usage of MINPUT. (WRB)
  396. C 901009 Editorial changes, code now reads from top to bottom. (RWC)
  397. C***END PROLOGUE SBOLSM
  398. C
  399. C PURPOSE
  400. C -------
  401. C THIS IS THE MAIN SUBPROGRAM THAT SOLVES THE BOUNDED
  402. C LEAST SQUARES PROBLEM. THE PROBLEM SOLVED HERE IS:
  403. C
  404. C SOLVE E*X = F (LEAST SQUARES SENSE)
  405. C WITH BOUNDS ON SELECTED X VALUES.
  406. C
  407. C TO CHANGE THIS SUBPROGRAM FROM SINGLE TO DOUBLE PRECISION BEGIN
  408. C EDITING AT THE CARD 'C++'.
  409. C CHANGE THE SUBPROGRAM NAME TO DBOLSM AND THE STRINGS
  410. C /SAXPY/ TO /DAXPY/, /SCOPY/ TO /DCOPY/,
  411. C /SDOT/ TO /DDOT/, /SNRM2/ TO /DNRM2/,
  412. C /SROT/ TO /DROT/, /SROTG/ TO /DROTG/, /R1MACH/ TO /D1MACH/,
  413. C /SVOUT/ TO /DVOUT/, /SMOUT/ TO /DMOUT/,
  414. C /SSWAP/ TO /DSWAP/, /E0/ TO /D0/,
  415. C /REAL / TO /DOUBLE PRECISION/.
  416. C++
  417. C
  418. REAL W(MDW,*),BL(*),BU(*)
  419. REAL X(*),RW(*),WW(*),SCL(*)
  420. REAL ALPHA,BETA,BOU,COLABV,COLBLO
  421. REAL CL1,CL2,CL3,ONE,BIG
  422. REAL FAC,RNORM,SC,SS,T,TOLIND,WT
  423. REAL TWO,T1,T2,WBIG,WLARGE,WMAG,XNEW
  424. REAL ZERO,SDOT,SNRM2
  425. REAL R1MACH,TOLSZE
  426. INTEGER IBASIS(*),IBB(*),IND(*),IOPT(*)
  427. LOGICAL FOUND,CONSTR
  428. CHARACTER*8 XERN1, XERN2
  429. CHARACTER*16 XERN3, XERN4
  430. C
  431. PARAMETER (ZERO=0.0E0, ONE=1.0E0, TWO=2.0E0)
  432. C
  433. INEXT(IDUM) = MIN(IDUM+1,MROWS)
  434. C***FIRST EXECUTABLE STATEMENT SBOLSM
  435. C
  436. C Verify that the problem dimensions are defined properly.
  437. C
  438. IF (MINPUT.LE.0) THEN
  439. WRITE (XERN1, '(I8)') MINPUT
  440. CALL XERMSG ('SLATEC', 'SBOLSM', 'THE NUMBER OF ROWS = ' //
  441. * XERN1 // ' MUST BE POSITIVE.', 31, 1)
  442. MODE = -31
  443. RETURN
  444. ENDIF
  445. C
  446. IF (NCOLS.LE.0) THEN
  447. WRITE (XERN1, '(I8)') NCOLS
  448. CALL XERMSG ('SLATEC', 'SBOLSM', 'THE NUMBER OF COLUMNS = ' //
  449. * XERN1 // ' MUST BE POSITIVE.', 32, 1)
  450. MODE = -32
  451. RETURN
  452. ENDIF
  453. C
  454. IF (MDW.LT.MINPUT) THEN
  455. WRITE (XERN1, '(I8)') MDW
  456. WRITE (XERN2, '(I8)') MINPUT
  457. CALL XERMSG ('SLATEC', 'SBOLSM',
  458. * 'THE ROW DIMENSION OF W(,) = ' // XERN1 //
  459. * ' MUST BE .GE. THE NUMBER OF ROWS = ' // XERN2, 33, 1)
  460. MODE = -33
  461. RETURN
  462. ENDIF
  463. C
  464. C Verify that bound information is correct.
  465. C
  466. DO 10 J = 1,NCOLS
  467. IF (IND(J).LT.1 .OR. IND(J).GT.4) THEN
  468. WRITE (XERN1, '(I8)') J
  469. WRITE (XERN2, '(I8)') IND(J)
  470. CALL XERMSG ('SLATEC', 'SBOLSM', 'FOR J = ' // XERN1 //
  471. * ' THE CONSTRAINT INDICATOR MUST BE 1-4', 34, 1)
  472. MODE = -34
  473. RETURN
  474. ENDIF
  475. 10 CONTINUE
  476. C
  477. DO 20 J = 1,NCOLS
  478. IF (IND(J).EQ.3) THEN
  479. IF (BU(J).LT.BL(J)) THEN
  480. WRITE (XERN1, '(I8)') J
  481. WRITE (XERN3, '(1PE15.6)') BL(J)
  482. WRITE (XERN4, '(1PE15.6)') BU(J)
  483. CALL XERMSG ('SLATEC', 'SBOLSM', 'FOR J = ' // XERN1
  484. * // ' THE LOWER BOUND = ' // XERN3 //
  485. * ' IS .GT. THE UPPER BOUND = ' // XERN4, 35, 1)
  486. MODE = -35
  487. RETURN
  488. ENDIF
  489. ENDIF
  490. 20 CONTINUE
  491. C
  492. C Check that permutation and polarity arrays have been set.
  493. C
  494. DO 30 J = 1,NCOLS
  495. IF (IBASIS(J).LT.1 .OR. IBASIS(J).GT.NCOLS) THEN
  496. WRITE (XERN1, '(I8)') IBASIS(J)
  497. WRITE (XERN2, '(I8)') NCOLS
  498. CALL XERMSG ('SLATEC', 'SBOLSM',
  499. * 'THE INPUT ORDER OF COLUMNS = ' // XERN1 //
  500. * ' IS NOT BETWEEN 1 AND NCOLS = ' // XERN2, 36, 1)
  501. MODE = -36
  502. RETURN
  503. ENDIF
  504. C
  505. IF (IBB(J).LE.0) THEN
  506. WRITE (XERN1, '(I8)') J
  507. WRITE (XERN2, '(I8)') IBB(J)
  508. CALL XERMSG ('SLATEC', 'SBOLSM',
  509. * 'THE BOUND POLARITY FLAG IN COMPONENT J = ' // XERN1 //
  510. * ' MUST BE POSITIVE.$$NOW = ' // XERN2, 37, 1)
  511. MODE = -37
  512. RETURN
  513. ENDIF
  514. 30 CONTINUE
  515. C
  516. C Process the option array.
  517. C
  518. FAC = 0.75E0
  519. TOLIND = SQRT(R1MACH(4))
  520. TOLSZE = SQRT(R1MACH(4))
  521. ITMAX = 5*MAX(MINPUT,NCOLS)
  522. WT = ONE
  523. MVAL = 0
  524. IPRINT = 0
  525. C
  526. C Changes to some parameters can occur through the option array,
  527. C IOPT(*). Process this array looking carefully for input data
  528. C errors.
  529. C
  530. LP = 0
  531. LDS = 0
  532. C
  533. C Test for no more options.
  534. C
  535. 590 LP = LP + LDS
  536. IP = IOPT(LP+1)
  537. JP = ABS(IP)
  538. IF (IP.EQ.99) THEN
  539. GO TO 470
  540. ELSE IF (JP.EQ.99) THEN
  541. LDS = 1
  542. ELSE IF (JP.EQ.1) THEN
  543. C
  544. C Move the IOPT(*) processing pointer.
  545. C
  546. IF (IP.GT.0) THEN
  547. LP = IOPT(LP+2) - 1
  548. LDS = 0
  549. ELSE
  550. LDS = 2
  551. ENDIF
  552. ELSE IF (JP.EQ.2) THEN
  553. C
  554. C Change tolerance for rank determination.
  555. C
  556. IF (IP.GT.0) THEN
  557. IOFF = IOPT(LP+2)
  558. IF (IOFF.LE.0) THEN
  559. WRITE (XERN1, '(I8)') IOFF
  560. WRITE (XERN2, '(I8)') NCOLS
  561. CALL XERMSG ('SLATEC', 'SBOLSM', 'THE OFFSET = ' //
  562. * XERN1 // ' BEYOND POSITION NCOLS = ' // XERN2 //
  563. * ' MUST BE POSITIVE FOR OPTION NUMBER 2.', 24, 1)
  564. MODE = -24
  565. RETURN
  566. ENDIF
  567. C
  568. TOLIND = X(NCOLS+IOFF)
  569. IF (TOLIND.LT.R1MACH(4)) THEN
  570. WRITE (XERN3, '(1PE15.6)') TOLIND
  571. WRITE (XERN4, '(1PE15.6)') R1MACH(4)
  572. CALL XERMSG ('SLATEC', 'SBOLSM',
  573. * 'THE TOLERANCE FOR RANK DETERMINATION = ' // XERN3
  574. * // ' IS LESS THAN MACHINE PRECISION = ' // XERN4,
  575. * 25, 0)
  576. MODE = -25
  577. ENDIF
  578. ENDIF
  579. LDS = 2
  580. ELSE IF (JP.EQ.3) THEN
  581. C
  582. C Change blowup factor for allowing variables to become
  583. C inactive.
  584. C
  585. IF (IP.GT.0) THEN
  586. IOFF = IOPT(LP+2)
  587. IF (IOFF.LE.0) THEN
  588. WRITE (XERN1, '(I8)') IOFF
  589. WRITE (XERN2, '(I8)') NCOLS
  590. CALL XERMSG ('SLATEC', 'SBOLSM', 'THE OFFSET = ' //
  591. * XERN1 // ' BEYOND POSITION NCOLS = ' // XERN2 //
  592. * ' MUST BE POSITIVE FOR OPTION NUMBER 3.', 26, 1)
  593. MODE = -26
  594. RETURN
  595. ENDIF
  596. C
  597. TOLSZE = X(NCOLS+IOFF)
  598. IF (TOLSZE.LE.ZERO) THEN
  599. WRITE (XERN3, '(1PE15.6)') TOLSZE
  600. CALL XERMSG ('SLATEC', 'SBOLSM', 'THE RECIPROCAL ' //
  601. * 'OF THE BLOW-UP FACTOR FOR REJECTING VARIABLES ' //
  602. * 'MUST BE POSITIVE.$$NOW = ' // XERN3, 27, 1)
  603. MODE = -27
  604. RETURN
  605. ENDIF
  606. ENDIF
  607. LDS = 2
  608. ELSE IF (JP.EQ.4) THEN
  609. C
  610. C Change the maximum number of iterations allowed.
  611. C
  612. IF (IP.GT.0) THEN
  613. ITMAX = IOPT(LP+2)
  614. IF (ITMAX.LE.0) THEN
  615. WRITE (XERN1, '(I8)') ITMAX
  616. CALL XERMSG ('SLATEC', 'SBOLSM',
  617. * 'THE MAXIMUM NUMBER OF ITERATIONS = ' // XERN1 //
  618. * ' MUST BE POSITIVE.', 28, 1)
  619. MODE = -28
  620. RETURN
  621. ENDIF
  622. ENDIF
  623. LDS = 2
  624. ELSE IF (JP.EQ.5) THEN
  625. C
  626. C Change the factor for pretriangularizing the data matrix.
  627. C
  628. IF (IP.GT.0) THEN
  629. IOFF = IOPT(LP+2)
  630. IF (IOFF.LE.0) THEN
  631. WRITE (XERN1, '(I8)') IOFF
  632. WRITE (XERN2, '(I8)') NCOLS
  633. CALL XERMSG ('SLATEC', 'SBOLSM', 'THE OFFSET = ' //
  634. * XERN1 // ' BEYOND POSITION NCOLS = ' // XERN2 //
  635. * ' MUST BE POSITIVE FOR OPTION NUMBER 5.', 29, 1)
  636. MODE = -29
  637. RETURN
  638. ENDIF
  639. C
  640. FAC = X(NCOLS+IOFF)
  641. IF (FAC.LT.ZERO) THEN
  642. WRITE (XERN3, '(1PE15.6)') FAC
  643. CALL XERMSG ('SLATEC', 'SBOLSM',
  644. * 'THE FACTOR (NCOLS/MINPUT) WHERE PRE-' //
  645. * 'TRIANGULARIZING IS PERFORMED MUST BE NON-' //
  646. * 'NEGATIVE.$$NOW = ' // XERN3, 30, 0)
  647. MODE = -30
  648. RETURN
  649. ENDIF
  650. ENDIF
  651. LDS = 2
  652. ELSE IF (JP.EQ.6) THEN
  653. C
  654. C Change the weighting factor (from 1.0) to apply to components
  655. C numbered .gt. MVAL (initially set to 1.) This trick is needed
  656. C for applications of this subprogram to the heavily weighted
  657. C least squares problem that come from equality constraints.
  658. C
  659. IF (IP.GT.0) THEN
  660. IOFF = IOPT(LP+2)
  661. MVAL = IOPT(LP+3)
  662. WT = X(NCOLS+IOFF)
  663. ENDIF
  664. C
  665. IF (MVAL.LT.0 .OR. MVAL.GT.MINPUT .OR. WT.LE.ZERO) THEN
  666. WRITE (XERN1, '(I8)') MVAL
  667. WRITE (XERN2, '(I8)') MINPUT
  668. WRITE (XERN3, '(1PE15.6)') WT
  669. CALL XERMSG ('SLATEC', 'SBOLSM',
  670. * 'THE ROW SEPARATOR TO APPLY WEIGHTING (' // XERN1 //
  671. * ') MUST LIE BETWEEN 0 AND MINPUT = ' // XERN2 //
  672. * '.$$WEIGHT = ' // XERN3 // ' MUST BE POSITIVE.', 38, 0)
  673. MODE = -38
  674. RETURN
  675. ENDIF
  676. LDS = 3
  677. ELSE IF (JP.EQ.7) THEN
  678. C
  679. C Turn on debug output.
  680. C
  681. IF (IP.GT.0) IPRINT = 1
  682. LDS = 2
  683. ELSE
  684. WRITE (XERN1, '(I8)') IP
  685. CALL XERMSG ('SLATEC', 'SBOLSM', 'THE OPTION NUMBER = ' //
  686. * XERN1 // ' IS NOT DEFINED.', 23, 1)
  687. MODE = -23
  688. RETURN
  689. ENDIF
  690. GO TO 590
  691. C
  692. C Pretriangularize rectangular arrays of certain sizes for
  693. C increased efficiency.
  694. C
  695. 470 IF (FAC*MINPUT.GT.NCOLS) THEN
  696. DO 490 J = 1,NCOLS+1
  697. DO 480 I = MINPUT,J+MVAL+1,-1
  698. CALL SROTG(W(I-1,J),W(I,J),SC,SS)
  699. W(I,J) = ZERO
  700. CALL SROT(NCOLS-J+1,W(I-1,J+1),MDW,W(I,J+1),MDW,SC,SS)
  701. 480 CONTINUE
  702. 490 CONTINUE
  703. MROWS = NCOLS + MVAL + 1
  704. ELSE
  705. MROWS = MINPUT
  706. ENDIF
  707. C
  708. C Set the X(*) array to zero so all components are defined.
  709. C
  710. CALL SCOPY(NCOLS,ZERO,0,X,1)
  711. C
  712. C The arrays IBASIS(*) and IBB(*) are initialized by the calling
  713. C program and the column scaling is defined in the calling program.
  714. C 'BIG' is plus infinity on this machine.
  715. C
  716. BIG = R1MACH(2)
  717. DO 550 J = 1,NCOLS
  718. IF (IND(J).EQ.1) THEN
  719. BU(J) = BIG
  720. ELSE IF (IND(J).EQ.2) THEN
  721. BL(J) = -BIG
  722. ELSE IF (IND(J).EQ.4) THEN
  723. BL(J) = -BIG
  724. BU(J) = BIG
  725. ENDIF
  726. 550 CONTINUE
  727. C
  728. DO 570 J = 1,NCOLS
  729. IF ((BL(J).LE.ZERO.AND.ZERO.LE.BU(J).AND.ABS(BU(J)).LT.
  730. * ABS(BL(J))) .OR. BU(J).LT.ZERO) THEN
  731. T = BU(J)
  732. BU(J) = -BL(J)
  733. BL(J) = -T
  734. SCL(J) = -SCL(J)
  735. DO 560 I = 1,MROWS
  736. W(I,J) = -W(I,J)
  737. 560 CONTINUE
  738. ENDIF
  739. C
  740. C Indices in set T(=TIGHT) are denoted by negative values
  741. C of IBASIS(*).
  742. C
  743. IF (BL(J).GE.ZERO) THEN
  744. IBASIS(J) = -IBASIS(J)
  745. T = -BL(J)
  746. BU(J) = BU(J) + T
  747. CALL SAXPY(MROWS,T,W(1,J),1,W(1,NCOLS+1),1)
  748. ENDIF
  749. 570 CONTINUE
  750. C
  751. NSETB = 0
  752. ITER = 0
  753. C
  754. IF (IPRINT.GT.0) THEN
  755. CALL SMOUT(MROWS,NCOLS+1,MDW,W,'('' PRETRI. INPUT MATRIX'')',
  756. * -4)
  757. CALL SVOUT(NCOLS,BL,'('' LOWER BOUNDS'')',-4)
  758. CALL SVOUT(NCOLS,BU,'('' UPPER BOUNDS'')',-4)
  759. ENDIF
  760. C
  761. 580 ITER = ITER + 1
  762. IF (ITER.GT.ITMAX) THEN
  763. WRITE (XERN1, '(I8)') ITMAX
  764. CALL XERMSG ('SLATEC', 'SBOLSM', 'MORE THAN ITMAX = ' // XERN1
  765. * // ' ITERATIONS SOLVING BOUNDED LEAST SQUARES PROBLEM.',
  766. * 22, 1)
  767. MODE = -22
  768. C
  769. C Rescale and translate variables.
  770. C
  771. IGOPR = 1
  772. GO TO 130
  773. ENDIF
  774. C
  775. C Find a variable to become non-active.
  776. C T
  777. C Compute (negative) of gradient vector, W = E *(F-E*X).
  778. C
  779. CALL SCOPY(NCOLS,ZERO,0,WW,1)
  780. DO 200 J = NSETB+1,NCOLS
  781. JCOL = ABS(IBASIS(J))
  782. WW(J) = SDOT(MROWS-NSETB,W(INEXT(NSETB),J),1,
  783. * W(INEXT(NSETB),NCOLS+1),1)*ABS(SCL(JCOL))
  784. 200 CONTINUE
  785. C
  786. IF (IPRINT.GT.0) THEN
  787. CALL SVOUT(NCOLS,WW,'('' GRADIENT VALUES'')',-4)
  788. CALL IVOUT(NCOLS,IBASIS,'('' INTERNAL VARIABLE ORDER'')',-4)
  789. CALL IVOUT(NCOLS,IBB,'('' BOUND POLARITY'')',-4)
  790. ENDIF
  791. C
  792. C If active set = number of total rows, quit.
  793. C
  794. 210 IF (NSETB.EQ.MROWS) THEN
  795. FOUND = .FALSE.
  796. GO TO 120
  797. ENDIF
  798. C
  799. C Choose an extremal component of gradient vector for a candidate
  800. C to become non-active.
  801. C
  802. WLARGE = -BIG
  803. WMAG = -BIG
  804. DO 220 J = NSETB+1,NCOLS
  805. T = WW(J)
  806. IF (T.EQ.BIG) GO TO 220
  807. ITEMP = IBASIS(J)
  808. JCOL = ABS(ITEMP)
  809. T1 = SNRM2(MVAL-NSETB,W(INEXT(NSETB),J),1)
  810. IF (ITEMP.LT.0) THEN
  811. IF (MOD(IBB(JCOL),2).EQ.0) T = -T
  812. IF (T.LT.ZERO) GO TO 220
  813. IF (MVAL.GT.NSETB) T = T1
  814. IF (T.GT.WLARGE) THEN
  815. WLARGE = T
  816. JLARGE = J
  817. ENDIF
  818. ELSE
  819. IF (MVAL.GT.NSETB) T = T1
  820. IF (ABS(T).GT.WMAG) THEN
  821. WMAG = ABS(T)
  822. JMAG = J
  823. ENDIF
  824. ENDIF
  825. 220 CONTINUE
  826. C
  827. C Choose magnitude of largest component of gradient for candidate.
  828. C
  829. JBIG = 0
  830. WBIG = ZERO
  831. IF (WLARGE.GT.ZERO) THEN
  832. JBIG = JLARGE
  833. WBIG = WLARGE
  834. ENDIF
  835. C
  836. IF (WMAG.GE.WBIG) THEN
  837. JBIG = JMAG
  838. WBIG = WMAG
  839. ENDIF
  840. C
  841. IF (JBIG.EQ.0) THEN
  842. FOUND = .FALSE.
  843. IF (IPRINT.GT.0) THEN
  844. CALL IVOUT(0,I,'('' FOUND NO VARIABLE TO ENTER'')',-4)
  845. ENDIF
  846. GO TO 120
  847. ENDIF
  848. C
  849. C See if the incoming column is sufficiently independent. This
  850. C test is made before an elimination is performed.
  851. C
  852. IF (IPRINT.GT.0)
  853. * CALL IVOUT(1,JBIG,'('' TRY TO BRING IN THIS COL.'')',-4)
  854. C
  855. IF (MVAL.LE.NSETB) THEN
  856. CL1 = SNRM2(MVAL,W(1,JBIG),1)
  857. CL2 = ABS(WT)*SNRM2(NSETB-MVAL,W(INEXT(MVAL),JBIG),1)
  858. CL3 = ABS(WT)*SNRM2(MROWS-NSETB,W(INEXT(NSETB),JBIG),1)
  859. CALL SROTG(CL1,CL2,SC,SS)
  860. COLABV = ABS(CL1)
  861. COLBLO = CL3
  862. ELSE
  863. CL1 = SNRM2(NSETB,W(1,JBIG),1)
  864. CL2 = SNRM2(MVAL-NSETB,W(INEXT(NSETB),JBIG),1)
  865. CL3 = ABS(WT)*SNRM2(MROWS-MVAL,W(INEXT(MVAL),JBIG),1)
  866. COLABV = CL1
  867. CALL SROTG(CL2,CL3,SC,SS)
  868. COLBLO = ABS(CL2)
  869. ENDIF
  870. C
  871. IF (COLBLO.LE.TOLIND*COLABV) THEN
  872. WW(JBIG) = BIG
  873. IF (IPRINT.GT.0)
  874. * CALL IVOUT(0,I,'('' VARIABLE IS DEPENDENT, NOT USED.'')',
  875. * -4)
  876. GO TO 210
  877. ENDIF
  878. C
  879. C Swap matrix columns NSETB+1 and JBIG, plus pointer information,
  880. C and gradient values.
  881. C
  882. NSETB = NSETB + 1
  883. IF (NSETB.NE.JBIG) THEN
  884. CALL SSWAP(MROWS,W(1,NSETB),1,W(1,JBIG),1)
  885. CALL SSWAP(1,WW(NSETB),1,WW(JBIG),1)
  886. ITEMP = IBASIS(NSETB)
  887. IBASIS(NSETB) = IBASIS(JBIG)
  888. IBASIS(JBIG) = ITEMP
  889. ENDIF
  890. C
  891. C Eliminate entries below the pivot line in column NSETB.
  892. C
  893. IF (MROWS.GT.NSETB) THEN
  894. DO 230 I = MROWS,NSETB+1,-1
  895. IF (I.EQ.MVAL+1) GO TO 230
  896. CALL SROTG(W(I-1,NSETB),W(I,NSETB),SC,SS)
  897. W(I,NSETB) = ZERO
  898. CALL SROT(NCOLS-NSETB+1,W(I-1,NSETB+1),MDW,W(I,NSETB+1),
  899. * MDW,SC,SS)
  900. 230 CONTINUE
  901. C
  902. IF (MVAL.GE.NSETB .AND. MVAL.LT.MROWS) THEN
  903. CALL SROTG(W(NSETB,NSETB),W(MVAL+1,NSETB),SC,SS)
  904. W(MVAL+1,NSETB) = ZERO
  905. CALL SROT(NCOLS-NSETB+1,W(NSETB,NSETB+1),MDW,
  906. * W(MVAL+1,NSETB+1),MDW,SC,SS)
  907. ENDIF
  908. ENDIF
  909. C
  910. IF (W(NSETB,NSETB).EQ.ZERO) THEN
  911. WW(NSETB) = BIG
  912. NSETB = NSETB - 1
  913. IF (IPRINT.GT.0) THEN
  914. CALL IVOUT(0,I,'('' PIVOT IS ZERO, NOT USED.'')',-4)
  915. ENDIF
  916. GO TO 210
  917. ENDIF
  918. C
  919. C Check that new variable is moving in the right direction.
  920. C
  921. ITEMP = IBASIS(NSETB)
  922. JCOL = ABS(ITEMP)
  923. XNEW = (W(NSETB,NCOLS+1)/W(NSETB,NSETB))/ABS(SCL(JCOL))
  924. IF (ITEMP.LT.0) THEN
  925. C
  926. C IF(WW(NSETB).GE.ZERO.AND.XNEW.LE.ZERO) exit(quit)
  927. C IF(WW(NSETB).LE.ZERO.AND.XNEW.GE.ZERO) exit(quit)
  928. C
  929. IF ((WW(NSETB).GE.ZERO.AND.XNEW.LE.ZERO) .OR.
  930. * (WW(NSETB).LE.ZERO.AND.XNEW.GE.ZERO)) GO TO 240
  931. ENDIF
  932. FOUND = .TRUE.
  933. GO TO 120
  934. C
  935. 240 WW(NSETB) = BIG
  936. NSETB = NSETB - 1
  937. IF (IPRINT.GT.0)
  938. * CALL IVOUT(0,I,'('' VARIABLE HAS BAD DIRECTION, NOT USED.'')',
  939. * -4)
  940. GO TO 210
  941. C
  942. C Solve the triangular system.
  943. C
  944. 270 CALL SCOPY(NSETB,W(1,NCOLS+1),1,RW,1)
  945. DO 280 J = NSETB,1,-1
  946. RW(J) = RW(J)/W(J,J)
  947. JCOL = ABS(IBASIS(J))
  948. T = RW(J)
  949. IF (MOD(IBB(JCOL),2).EQ.0) RW(J) = -RW(J)
  950. CALL SAXPY(J-1,-T,W(1,J),1,RW,1)
  951. RW(J) = RW(J)/ABS(SCL(JCOL))
  952. 280 CONTINUE
  953. C
  954. IF (IPRINT.GT.0) THEN
  955. CALL SVOUT(NSETB,RW,'('' SOLN. VALUES'')',-4)
  956. CALL IVOUT(NSETB,IBASIS,'('' COLS. USED'')',-4)
  957. ENDIF
  958. C
  959. IF (LGOPR.EQ.2) THEN
  960. CALL SCOPY(NSETB,RW,1,X,1)
  961. DO 450 J = 1,NSETB
  962. ITEMP = IBASIS(J)
  963. JCOL = ABS(ITEMP)
  964. IF (ITEMP.LT.0) THEN
  965. BOU = ZERO
  966. ELSE
  967. BOU = BL(JCOL)
  968. ENDIF
  969. C
  970. IF ((-BOU).NE.BIG) BOU = BOU/ABS(SCL(JCOL))
  971. IF (X(J).LE.BOU) THEN
  972. JDROP1 = J
  973. GO TO 340
  974. ENDIF
  975. C
  976. BOU = BU(JCOL)
  977. IF (BOU.NE.BIG) BOU = BOU/ABS(SCL(JCOL))
  978. IF (X(J).GE.BOU) THEN
  979. JDROP2 = J
  980. GO TO 340
  981. ENDIF
  982. 450 CONTINUE
  983. GO TO 340
  984. ENDIF
  985. C
  986. C See if the unconstrained solution (obtained by solving the
  987. C triangular system) satisfies the problem bounds.
  988. C
  989. ALPHA = TWO
  990. BETA = TWO
  991. X(NSETB) = ZERO
  992. DO 310 J = 1,NSETB
  993. ITEMP = IBASIS(J)
  994. JCOL = ABS(ITEMP)
  995. T1 = TWO
  996. T2 = TWO
  997. IF (ITEMP.LT.0) THEN
  998. BOU = ZERO
  999. ELSE
  1000. BOU = BL(JCOL)
  1001. ENDIF
  1002. IF ((-BOU).NE.BIG) BOU = BOU/ABS(SCL(JCOL))
  1003. IF (RW(J).LE.BOU) T1 = (X(J)-BOU)/ (X(J)-RW(J))
  1004. BOU = BU(JCOL)
  1005. IF (BOU.NE.BIG) BOU = BOU/ABS(SCL(JCOL))
  1006. IF (RW(J).GE.BOU) T2 = (BOU-X(J))/ (RW(J)-X(J))
  1007. C
  1008. C If not, then compute a step length so that the variables remain
  1009. C feasible.
  1010. C
  1011. IF (T1.LT.ALPHA) THEN
  1012. ALPHA = T1
  1013. JDROP1 = J
  1014. ENDIF
  1015. C
  1016. IF (T2.LT.BETA) THEN
  1017. BETA = T2
  1018. JDROP2 = J
  1019. ENDIF
  1020. 310 CONTINUE
  1021. C
  1022. CONSTR = ALPHA .LT. TWO .OR. BETA .LT. TWO
  1023. IF (.NOT.CONSTR) THEN
  1024. C
  1025. C Accept the candidate because it satisfies the stated bounds
  1026. C on the variables.
  1027. C
  1028. CALL SCOPY(NSETB,RW,1,X,1)
  1029. GO TO 580
  1030. ENDIF
  1031. C
  1032. C Take a step that is as large as possible with all variables
  1033. C remaining feasible.
  1034. C
  1035. DO 330 J = 1,NSETB
  1036. X(J) = X(J) + MIN(ALPHA,BETA)* (RW(J)-X(J))
  1037. 330 CONTINUE
  1038. C
  1039. IF (ALPHA.LE.BETA) THEN
  1040. JDROP2 = 0
  1041. ELSE
  1042. JDROP1 = 0
  1043. ENDIF
  1044. C
  1045. 340 IF (JDROP1+JDROP2.LE.0 .OR. NSETB.LE.0) GO TO 580
  1046. 350 JDROP = JDROP1 + JDROP2
  1047. ITEMP = IBASIS(JDROP)
  1048. JCOL = ABS(ITEMP)
  1049. IF (JDROP2.GT.0) THEN
  1050. C
  1051. C Variable is at an upper bound. Subtract multiple of this
  1052. C column from right hand side.
  1053. C
  1054. T = BU(JCOL)
  1055. IF (ITEMP.GT.0) THEN
  1056. BU(JCOL) = T - BL(JCOL)
  1057. BL(JCOL) = -T
  1058. ITEMP = -ITEMP
  1059. SCL(JCOL) = -SCL(JCOL)
  1060. DO 360 I = 1,JDROP
  1061. W(I,JDROP) = -W(I,JDROP)
  1062. 360 CONTINUE
  1063. ELSE
  1064. IBB(JCOL) = IBB(JCOL) + 1
  1065. IF (MOD(IBB(JCOL),2).EQ.0) T = -T
  1066. ENDIF
  1067. C
  1068. C Variable is at a lower bound.
  1069. C
  1070. ELSE
  1071. IF (ITEMP.LT.ZERO) THEN
  1072. T = ZERO
  1073. ELSE
  1074. T = -BL(JCOL)
  1075. BU(JCOL) = BU(JCOL) + T
  1076. ITEMP = -ITEMP
  1077. ENDIF
  1078. ENDIF
  1079. C
  1080. CALL SAXPY(JDROP,T,W(1,JDROP),1,W(1,NCOLS+1),1)
  1081. C
  1082. C Move certain columns left to achieve upper Hessenberg form.
  1083. C
  1084. CALL SCOPY(JDROP,W(1,JDROP),1,RW,1)
  1085. DO 370 J = JDROP+1,NSETB
  1086. IBASIS(J-1) = IBASIS(J)
  1087. X(J-1) = X(J)
  1088. CALL SCOPY(J,W(1,J),1,W(1,J-1),1)
  1089. 370 CONTINUE
  1090. C
  1091. IBASIS(NSETB) = ITEMP
  1092. W(1,NSETB) = ZERO
  1093. CALL SCOPY(MROWS-JDROP,W(1,NSETB),0,W(JDROP+1,NSETB),1)
  1094. CALL SCOPY(JDROP,RW,1,W(1,NSETB),1)
  1095. C
  1096. C Transform the matrix from upper Hessenberg form to upper
  1097. C triangular form.
  1098. C
  1099. NSETB = NSETB - 1
  1100. DO 390 I = JDROP,NSETB
  1101. C
  1102. C Look for small pivots and avoid mixing weighted and
  1103. C nonweighted rows.
  1104. C
  1105. IF (I.EQ.MVAL) THEN
  1106. T = ZERO
  1107. DO 380 J = I,NSETB
  1108. JCOL = ABS(IBASIS(J))
  1109. T1 = ABS(W(I,J)*SCL(JCOL))
  1110. IF (T1.GT.T) THEN
  1111. JBIG = J
  1112. T = T1
  1113. ENDIF
  1114. 380 CONTINUE
  1115. GO TO 400
  1116. ENDIF
  1117. CALL SROTG(W(I,I),W(I+1,I),SC,SS)
  1118. W(I+1,I) = ZERO
  1119. CALL SROT(NCOLS-I+1,W(I,I+1),MDW,W(I+1,I+1),MDW,SC,SS)
  1120. 390 CONTINUE
  1121. GO TO 430
  1122. C
  1123. C The triangularization is completed by giving up the Hessenberg
  1124. C form and triangularizing a rectangular matrix.
  1125. C
  1126. 400 CALL SSWAP(MROWS,W(1,I),1,W(1,JBIG),1)
  1127. CALL SSWAP(1,WW(I),1,WW(JBIG),1)
  1128. CALL SSWAP(1,X(I),1,X(JBIG),1)
  1129. ITEMP = IBASIS(I)
  1130. IBASIS(I) = IBASIS(JBIG)
  1131. IBASIS(JBIG) = ITEMP
  1132. JBIG = I
  1133. DO 420 J = JBIG,NSETB
  1134. DO 410 I = J+1,MROWS
  1135. CALL SROTG(W(J,J),W(I,J),SC,SS)
  1136. W(I,J) = ZERO
  1137. CALL SROT(NCOLS-J+1,W(J,J+1),MDW,W(I,J+1),MDW,SC,SS)
  1138. 410 CONTINUE
  1139. 420 CONTINUE
  1140. C
  1141. C See if the remaining coefficients are feasible. They should be
  1142. C because of the way MIN(ALPHA,BETA) was chosen. Any that are not
  1143. C feasible will be set to their bounds and appropriately translated.
  1144. C
  1145. 430 JDROP1 = 0
  1146. JDROP2 = 0
  1147. LGOPR = 2
  1148. GO TO 270
  1149. C
  1150. C Find a variable to become non-active.
  1151. C
  1152. 120 IF (FOUND) THEN
  1153. LGOPR = 1
  1154. GO TO 270
  1155. ENDIF
  1156. C
  1157. C Rescale and translate variables.
  1158. C
  1159. IGOPR = 2
  1160. 130 CALL SCOPY(NSETB,X,1,RW,1)
  1161. CALL SCOPY(NCOLS,ZERO,0,X,1)
  1162. DO 140 J = 1,NSETB
  1163. JCOL = ABS(IBASIS(J))
  1164. X(JCOL) = RW(J)*ABS(SCL(JCOL))
  1165. 140 CONTINUE
  1166. C
  1167. DO 150 J = 1,NCOLS
  1168. IF (MOD(IBB(J),2).EQ.0) X(J) = BU(J) - X(J)
  1169. 150 CONTINUE
  1170. C
  1171. DO 160 J = 1,NCOLS
  1172. JCOL = IBASIS(J)
  1173. IF (JCOL.LT.0) X(-JCOL) = BL(-JCOL) + X(-JCOL)
  1174. 160 CONTINUE
  1175. C
  1176. DO 170 J = 1,NCOLS
  1177. IF (SCL(J).LT.ZERO) X(J) = -X(J)
  1178. 170 CONTINUE
  1179. C
  1180. I = MAX(NSETB,MVAL)
  1181. RNORM = SNRM2(MROWS-I,W(INEXT(I),NCOLS+1),1)
  1182. C
  1183. IF (IGOPR.EQ.2) MODE = NSETB
  1184. RETURN
  1185. END