scg.f 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. *DECK SCG
  2. SUBROUTINE SCG (N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
  3. + ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ, RWORK,
  4. + IWORK)
  5. C***BEGIN PROLOGUE SCG
  6. C***PURPOSE Preconditioned Conjugate Gradient Sparse Ax=b Solver.
  7. C Routine to solve a symmetric positive definite linear
  8. C system Ax = b using the Preconditioned Conjugate
  9. C Gradient method.
  10. C***LIBRARY SLATEC (SLAP)
  11. C***CATEGORY D2B4
  12. C***TYPE SINGLE PRECISION (SCG-S, DCG-D)
  13. C***KEYWORDS ITERATIVE PRECONDITION, SLAP, SPARSE,
  14. C SYMMETRIC LINEAR SYSTEM
  15. C***AUTHOR Greenbaum, Anne, (Courant Institute)
  16. C Seager, Mark K., (LLNL)
  17. C Lawrence Livermore National Laboratory
  18. C PO BOX 808, L-60
  19. C Livermore, CA 94550 (510) 423-3141
  20. C seager@llnl.gov
  21. C***DESCRIPTION
  22. C
  23. C *Usage:
  24. C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
  25. C INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
  26. C REAL B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
  27. C REAL P(N), DZ(N), RWORK(USER DEFINED)
  28. C EXTERNAL MATVEC, MSOLVE
  29. C
  30. C CALL SCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
  31. C $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
  32. C $ RWORK, IWORK )
  33. C
  34. C *Arguments:
  35. C N :IN Integer.
  36. C Order of the Matrix.
  37. C B :IN Real B(N).
  38. C Right-hand side vector.
  39. C X :INOUT Real X(N).
  40. C On input X is your initial guess for solution vector.
  41. C On output X is the final approximate solution.
  42. C NELT :IN Integer.
  43. C Number of Non-Zeros stored in A.
  44. C IA :IN Integer IA(NELT).
  45. C JA :IN Integer JA(NELT).
  46. C A :IN Real A(NELT).
  47. C These arrays contain the matrix data structure for A.
  48. C It could take any form. See "Description", below,
  49. C for more details.
  50. C ISYM :IN Integer.
  51. C Flag to indicate symmetric storage format.
  52. C If ISYM=0, all non-zero entries of the matrix are stored.
  53. C If ISYM=1, the matrix is symmetric, and only the upper
  54. C or lower triangle of the matrix is stored.
  55. C MATVEC :EXT External.
  56. C Name of a routine which performs the matrix vector multiply
  57. C Y = A*X given A and X. The name of the MATVEC routine must
  58. C be declared external in the calling program. The calling
  59. C sequence to MATVEC is:
  60. C
  61. C CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
  62. C
  63. C Where N is the number of unknowns, Y is the product A*X
  64. C upon return X is an input vector, NELT is the number of
  65. C non-zeros in the SLAP IA, JA, A storage for the matrix A.
  66. C ISYM is a flag which, if non-zero, denotest that A is
  67. C symmetric and only the lower or upper triangle is stored.
  68. C MSOLVE :EXT External.
  69. C Name of a routine which solves a linear system MZ = R for
  70. C Z given R with the preconditioning matrix M (M is supplied via
  71. C RWORK and IWORK arrays). The name of the MSOLVE routine must
  72. C be declared external in the calling program. The calling
  73. C sequence to MSOLVE is:
  74. C
  75. C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
  76. C
  77. C Where N is the number of unknowns, R is the right-hand side
  78. C vector and Z is the solution upon return. NELT, IA, JA, A and
  79. C ISYM are defined as above. RWORK is a real array that can
  80. C be used to pass necessary preconditioning information and/or
  81. C workspace to MSOLVE. IWORK is an integer work array for
  82. C the same purpose as RWORK.
  83. C ITOL :IN Integer.
  84. C Flag to indicate type of convergence criterion.
  85. C If ITOL=1, iteration stops when the 2-norm of the residual
  86. C divided by the 2-norm of the right-hand side is less than TOL.
  87. C If ITOL=2, iteration stops when the 2-norm of M-inv times the
  88. C residual divided by the 2-norm of M-inv times the right hand
  89. C side is less than TOL, where M-inv is the inverse of the
  90. C diagonal of A.
  91. C ITOL=11 is often useful for checking and comparing different
  92. C routines. For this case, the user must supply the "exact"
  93. C solution or a very accurate approximation (one with an error
  94. C much less than TOL) through a common block,
  95. C COMMON /SSLBLK/ SOLN( )
  96. C If ITOL=11, iteration stops when the 2-norm of the difference
  97. C between the iterative approximation and the user-supplied
  98. C solution divided by the 2-norm of the user-supplied solution
  99. C is less than TOL. Note that this requires the user to set up
  100. C the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
  101. C The routine with this declaration should be loaded before the
  102. C stop test so that the correct length is used by the loader.
  103. C This procedure is not standard Fortran and may not work
  104. C correctly on your system (although it has worked on every
  105. C system the authors have tried). If ITOL is not 11 then this
  106. C common block is indeed standard Fortran.
  107. C TOL :INOUT Real.
  108. C Convergence criterion, as described above. (Reset if IERR=4.)
  109. C ITMAX :IN Integer.
  110. C Maximum number of iterations.
  111. C ITER :OUT Integer.
  112. C Number of iterations required to reach convergence, or
  113. C ITMAX+1 if convergence criterion could not be achieved in
  114. C ITMAX iterations.
  115. C ERR :OUT Real.
  116. C Error estimate of error in final approximate solution, as
  117. C defined by ITOL.
  118. C IERR :OUT Integer.
  119. C Return error flag.
  120. C IERR = 0 => All went well.
  121. C IERR = 1 => Insufficient space allocated for WORK or IWORK.
  122. C IERR = 2 => Method failed to converge in ITMAX steps.
  123. C IERR = 3 => Error in user input.
  124. C Check input values of N, ITOL.
  125. C IERR = 4 => User error tolerance set too tight.
  126. C Reset to 500*R1MACH(3). Iteration proceeded.
  127. C IERR = 5 => Preconditioning matrix, M, is not positive
  128. C definite. (r,z) < 0.
  129. C IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
  130. C IUNIT :IN Integer.
  131. C Unit number on which to write the error at each iteration,
  132. C if this is desired for monitoring convergence. If unit
  133. C number is 0, no writing will occur.
  134. C R :WORK Real R(N).
  135. C Z :WORK Real Z(N).
  136. C P :WORK Real P(N).
  137. C DZ :WORK Real DZ(N).
  138. C Real arrays used for workspace.
  139. C RWORK :WORK Real RWORK(USER DEFINED).
  140. C Real array that can be used by MSOLVE.
  141. C IWORK :WORK Integer IWORK(USER DEFINED).
  142. C Integer array that can be used by MSOLVE.
  143. C
  144. C *Description
  145. C This routine does not care what matrix data structure is
  146. C used for A and M. It simply calls the MATVEC and MSOLVE
  147. C routines, with the arguments as described above. The user
  148. C could write any type of structure and the appropriate MATVEC
  149. C and MSOLVE routines. It is assumed that A is stored in the
  150. C IA, JA, A arrays in some fashion and that M (or INV(M)) is
  151. C stored in IWORK and RWORK in some fashion. The SLAP
  152. C routines SSDCG and SSICCG are examples of this procedure.
  153. C
  154. C Two examples of matrix data structures are the: 1) SLAP
  155. C Triad format and 2) SLAP Column format.
  156. C
  157. C =================== S L A P Triad format ===================
  158. C
  159. C In this format only the non-zeros are stored. They may
  160. C appear in *ANY* order. The user supplies three arrays of
  161. C length NELT, where NELT is the number of non-zeros in the
  162. C matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
  163. C the user puts the row and column index of that matrix
  164. C element in the IA and JA arrays. The value of the non-zero
  165. C matrix element is placed in the corresponding location of
  166. C the A array. This is an extremely easy data structure to
  167. C generate. On the other hand it is not too efficient on
  168. C vector computers for the iterative solution of linear
  169. C systems. Hence, SLAP changes this input data structure to
  170. C the SLAP Column format for the iteration (but does not
  171. C change it back).
  172. C
  173. C Here is an example of the SLAP Triad storage format for a
  174. C 5x5 Matrix. Recall that the entries may appear in any order.
  175. C
  176. C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
  177. C 1 2 3 4 5 6 7 8 9 10 11
  178. C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
  179. C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
  180. C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
  181. C | 0 0 0 44 0|
  182. C |51 0 53 0 55|
  183. C
  184. C =================== S L A P Column format ==================
  185. C
  186. C In this format the non-zeros are stored counting down
  187. C columns (except for the diagonal entry, which must appear
  188. C first in each "column") and are stored in the real array A.
  189. C In other words, for each column in the matrix put the
  190. C diagonal entry in A. Then put in the other non-zero
  191. C elements going down the column (except the diagonal) in
  192. C order. The IA array holds the row index for each non-zero.
  193. C The JA array holds the offsets into the IA, A arrays for the
  194. C beginning of each column. That is, IA(JA(ICOL)),
  195. C A(JA(ICOL)) points to the beginning of the ICOL-th column in
  196. C IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
  197. C end of the ICOL-th column. Note that we always have JA(N+1)
  198. C = NELT+1, where N is the number of columns in the matrix and
  199. C NELT is the number of non-zeros in the matrix.
  200. C
  201. C Here is an example of the SLAP Column storage format for a
  202. C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
  203. C column):
  204. C
  205. C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
  206. C 1 2 3 4 5 6 7 8 9 10 11
  207. C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
  208. C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
  209. C | 0 0 33 0 35| JA: 1 4 6 8 9 12
  210. C | 0 0 0 44 0|
  211. C |51 0 53 0 55|
  212. C
  213. C *Cautions:
  214. C This routine will attempt to write to the Fortran logical output
  215. C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
  216. C this logical unit is attached to a file or terminal before calling
  217. C this routine with a non-zero value for IUNIT. This routine does
  218. C not check for the validity of a non-zero IUNIT unit number.
  219. C
  220. C***SEE ALSO SSDCG, SSICCG
  221. C***REFERENCES 1. Louis Hageman and David Young, Applied Iterative
  222. C Methods, Academic Press, New York, 1981.
  223. C 2. Concus, Golub and O'Leary, A Generalized Conjugate
  224. C Gradient Method for the Numerical Solution of
  225. C Elliptic Partial Differential Equations, in Sparse
  226. C Matrix Computations, Bunch and Rose, Eds., Academic
  227. C Press, New York, 1979.
  228. C 3. Mark K. Seager, A SLAP for the Masses, in
  229. C G. F. Carey, Ed., Parallel Supercomputing: Methods,
  230. C Algorithms and Applications, Wiley, 1989, pp.135-155.
  231. C***ROUTINES CALLED ISSCG, R1MACH, SAXPY, SCOPY, SDOT
  232. C***REVISION HISTORY (YYMMDD)
  233. C 871119 DATE WRITTEN
  234. C 881213 Previous REVISION DATE
  235. C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
  236. C 890921 Removed TeX from comments. (FNF)
  237. C 890922 Numerous changes to prologue to make closer to SLATEC
  238. C standard. (FNF)
  239. C 890929 Numerous changes to reduce SP/DP differences. (FNF)
  240. C 891004 Added new reference.
  241. C 910411 Prologue converted to Version 4.0 format. (BAB)
  242. C 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
  243. C 920407 COMMON BLOCK renamed SSLBLK. (WRB)
  244. C 920511 Added complete declaration section. (WRB)
  245. C 920929 Corrected format of references. (FNF)
  246. C 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
  247. C***END PROLOGUE SCG
  248. C .. Scalar Arguments ..
  249. REAL ERR, TOL
  250. INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, N, NELT
  251. C .. Array Arguments ..
  252. REAL A(NELT), B(N), DZ(N), P(N), R(N), RWORK(*), X(N), Z(N)
  253. INTEGER IA(NELT), IWORK(*), JA(NELT)
  254. C .. Subroutine Arguments ..
  255. EXTERNAL MATVEC, MSOLVE
  256. C .. Local Scalars ..
  257. REAL AK, AKDEN, BK, BKDEN, BKNUM, BNRM, SOLNRM, TOLMIN
  258. INTEGER I, K
  259. C .. External Functions ..
  260. REAL R1MACH, SDOT
  261. INTEGER ISSCG
  262. EXTERNAL R1MACH, SDOT, ISSCG
  263. C .. External Subroutines ..
  264. EXTERNAL SAXPY, SCOPY
  265. C***FIRST EXECUTABLE STATEMENT SCG
  266. C
  267. C Check some of the input data.
  268. C
  269. ITER = 0
  270. IERR = 0
  271. IF( N.LT.1 ) THEN
  272. IERR = 3
  273. RETURN
  274. ENDIF
  275. TOLMIN = 500*R1MACH(3)
  276. IF( TOL.LT.TOLMIN ) THEN
  277. TOL = TOLMIN
  278. IERR = 4
  279. ENDIF
  280. C
  281. C Calculate initial residual and pseudo-residual, and check
  282. C stopping criterion.
  283. CALL MATVEC(N, X, R, NELT, IA, JA, A, ISYM)
  284. DO 10 I = 1, N
  285. R(I) = B(I) - R(I)
  286. 10 CONTINUE
  287. CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
  288. C
  289. IF( ISSCG(N, B, X, NELT, IA, JA, A, ISYM, MSOLVE, ITOL, TOL,
  290. $ ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
  291. $ RWORK, IWORK, AK, BK, BNRM, SOLNRM) .NE. 0 ) GO TO 200
  292. IF( IERR.NE.0 ) RETURN
  293. C
  294. C ***** Iteration loop *****
  295. C
  296. DO 100 K=1,ITMAX
  297. ITER = K
  298. C
  299. C Calculate coefficient bk and direction vector p.
  300. BKNUM = SDOT(N, Z, 1, R, 1)
  301. IF( BKNUM.LE.0.0E0 ) THEN
  302. IERR = 5
  303. RETURN
  304. ENDIF
  305. IF(ITER .EQ. 1) THEN
  306. CALL SCOPY(N, Z, 1, P, 1)
  307. ELSE
  308. BK = BKNUM/BKDEN
  309. DO 20 I = 1, N
  310. P(I) = Z(I) + BK*P(I)
  311. 20 CONTINUE
  312. ENDIF
  313. BKDEN = BKNUM
  314. C
  315. C Calculate coefficient ak, new iterate x, new residual r,
  316. C and new pseudo-residual z.
  317. CALL MATVEC(N, P, Z, NELT, IA, JA, A, ISYM)
  318. AKDEN = SDOT(N, P, 1, Z, 1)
  319. IF( AKDEN.LE.0.0E0 ) THEN
  320. IERR = 6
  321. RETURN
  322. ENDIF
  323. AK = BKNUM/AKDEN
  324. CALL SAXPY(N, AK, P, 1, X, 1)
  325. CALL SAXPY(N, -AK, Z, 1, R, 1)
  326. CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
  327. C
  328. C check stopping criterion.
  329. IF( ISSCG(N, B, X, NELT, IA, JA, A, ISYM, MSOLVE, ITOL, TOL,
  330. $ ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ, RWORK,
  331. $ IWORK, AK, BK, BNRM, SOLNRM) .NE. 0 ) GO TO 200
  332. C
  333. 100 CONTINUE
  334. C
  335. C ***** end of loop *****
  336. C
  337. C stopping criterion not satisfied.
  338. ITER = ITMAX + 1
  339. IERR = 2
  340. C
  341. 200 RETURN
  342. C------------- LAST LINE OF SCG FOLLOWS -----------------------------
  343. END