123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611 |
- *DECK SDASTP
- SUBROUTINE SDASTP (X, Y, YPRIME, NEQ, RES, JAC, H, WT, JSTART,
- * IDID, RPAR, IPAR, PHI, DELTA, E, WM, IWM, ALPHA, BETA, GAMMA,
- * PSI, SIGMA, CJ, CJOLD, HOLD, S, HMIN, UROUND, IPHASE, JCALC, K,
- * KOLD, NS, NONNEG, NTEMP)
- C***BEGIN PROLOGUE SDASTP
- C***SUBSIDIARY
- C***PURPOSE Perform one step of the SDASSL integration.
- C***LIBRARY SLATEC (DASSL)
- C***TYPE SINGLE PRECISION (SDASTP-S, DDASTP-D)
- C***AUTHOR Petzold, Linda R., (LLNL)
- C***DESCRIPTION
- C-----------------------------------------------------------------------
- C SDASTP SOLVES A SYSTEM OF DIFFERENTIAL/
- C ALGEBRAIC EQUATIONS OF THE FORM
- C G(X,Y,YPRIME) = 0, FOR ONE STEP (NORMALLY
- C FROM X TO X+H).
- C
- C THE METHODS USED ARE MODIFIED DIVIDED
- C DIFFERENCE,FIXED LEADING COEFFICIENT
- C FORMS OF BACKWARD DIFFERENTIATION
- C FORMULAS. THE CODE ADJUSTS THE STEPSIZE
- C AND ORDER TO CONTROL THE LOCAL ERROR PER
- C STEP.
- C
- C
- C THE PARAMETERS REPRESENT
- C X -- INDEPENDENT VARIABLE
- C Y -- SOLUTION VECTOR AT X
- C YPRIME -- DERIVATIVE OF SOLUTION VECTOR
- C AFTER SUCCESSFUL STEP
- C NEQ -- NUMBER OF EQUATIONS TO BE INTEGRATED
- C RES -- EXTERNAL USER-SUPPLIED SUBROUTINE
- C TO EVALUATE THE RESIDUAL. THE CALL IS
- C CALL RES(X,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
- C X,Y,YPRIME ARE INPUT. DELTA IS OUTPUT.
- C ON INPUT, IRES=0. RES SHOULD ALTER IRES ONLY
- C IF IT ENCOUNTERS AN ILLEGAL VALUE OF Y OR A
- C STOP CONDITION. SET IRES=-1 IF AN INPUT VALUE
- C OF Y IS ILLEGAL, AND SDASTP WILL TRY TO SOLVE
- C THE PROBLEM WITHOUT GETTING IRES = -1. IF
- C IRES=-2, SDASTP RETURNS CONTROL TO THE CALLING
- C PROGRAM WITH IDID = -11.
- C JAC -- EXTERNAL USER-SUPPLIED ROUTINE TO EVALUATE
- C THE ITERATION MATRIX (THIS IS OPTIONAL)
- C THE CALL IS OF THE FORM
- C CALL JAC(X,Y,YPRIME,PD,CJ,RPAR,IPAR)
- C PD IS THE MATRIX OF PARTIAL DERIVATIVES,
- C PD=DG/DY+CJ*DG/DYPRIME
- C H -- APPROPRIATE STEP SIZE FOR NEXT STEP.
- C NORMALLY DETERMINED BY THE CODE
- C WT -- VECTOR OF WEIGHTS FOR ERROR CRITERION.
- C JSTART -- INTEGER VARIABLE SET 0 FOR
- C FIRST STEP, 1 OTHERWISE.
- C IDID -- COMPLETION CODE WITH THE FOLLOWING MEANINGS:
- C IDID= 1 -- THE STEP WAS COMPLETED SUCCESSFULLY
- C IDID=-6 -- THE ERROR TEST FAILED REPEATEDLY
- C IDID=-7 -- THE CORRECTOR COULD NOT CONVERGE
- C IDID=-8 -- THE ITERATION MATRIX IS SINGULAR
- C IDID=-9 -- THE CORRECTOR COULD NOT CONVERGE.
- C THERE WERE REPEATED ERROR TEST
- C FAILURES ON THIS STEP.
- C IDID=-10-- THE CORRECTOR COULD NOT CONVERGE
- C BECAUSE IRES WAS EQUAL TO MINUS ONE
- C IDID=-11-- IRES EQUAL TO -2 WAS ENCOUNTERED,
- C AND CONTROL IS BEING RETURNED TO
- C THE CALLING PROGRAM
- C RPAR,IPAR -- REAL AND INTEGER PARAMETER ARRAYS THAT
- C ARE USED FOR COMMUNICATION BETWEEN THE
- C CALLING PROGRAM AND EXTERNAL USER ROUTINES
- C THEY ARE NOT ALTERED BY SDASTP
- C PHI -- ARRAY OF DIVIDED DIFFERENCES USED BY
- C SDASTP. THE LENGTH IS NEQ*(K+1),WHERE
- C K IS THE MAXIMUM ORDER
- C DELTA,E -- WORK VECTORS FOR SDASTP OF LENGTH NEQ
- C WM,IWM -- REAL AND INTEGER ARRAYS STORING
- C MATRIX INFORMATION SUCH AS THE MATRIX
- C OF PARTIAL DERIVATIVES,PERMUTATION
- C VECTOR, AND VARIOUS OTHER INFORMATION.
- C
- C THE OTHER PARAMETERS ARE INFORMATION
- C WHICH IS NEEDED INTERNALLY BY SDASTP TO
- C CONTINUE FROM STEP TO STEP.
- C
- C-----------------------------------------------------------------------
- C***ROUTINES CALLED SDAJAC, SDANRM, SDASLV, SDATRP
- C***REVISION HISTORY (YYMMDD)
- C 830315 DATE WRITTEN
- C 901009 Finished conversion to SLATEC 4.0 format (F.N.Fritsch)
- C 901019 Merged changes made by C. Ulrich with SLATEC 4.0 format.
- C 901026 Added explicit declarations for all variables and minor
- C cosmetic changes to prologue. (FNF)
- C***END PROLOGUE SDASTP
- C
- INTEGER NEQ, JSTART, IDID, IPAR(*), IWM(*), IPHASE, JCALC, K,
- * KOLD, NS, NONNEG, NTEMP
- REAL X, Y(*), YPRIME(*), H, WT(*), RPAR(*), PHI(NEQ,*), DELTA(*),
- * E(*), WM(*), ALPHA(*), BETA(*), GAMMA(*), PSI(*), SIGMA(*), CJ,
- * CJOLD, HOLD, S, HMIN, UROUND
- EXTERNAL RES, JAC
- C
- EXTERNAL SDAJAC, SDANRM, SDASLV, SDATRP
- REAL SDANRM
- C
- INTEGER I, IER, IRES, J, J1, KDIFF, KM1, KNEW, KP1, KP2, LCTF,
- * LETF, LMXORD, LNJE, LNRE, LNST, M, MAXIT, NCF, NEF, NSF, NSP1
- REAL ALPHA0, ALPHAS, CJLAST, CK, DELNRM, ENORM, ERK, ERKM1,
- * ERKM2, ERKP1, ERR, EST, HNEW, OLDNRM, PNORM, R, RATE, TEMP1,
- * TEMP2, TERK, TERKM1, TERKM2, TERKP1, XOLD, XRATE
- LOGICAL CONVGD
- C
- PARAMETER (LMXORD=3)
- PARAMETER (LNST=11)
- PARAMETER (LNRE=12)
- PARAMETER (LNJE=13)
- PARAMETER (LETF=14)
- PARAMETER (LCTF=15)
- C
- DATA MAXIT/4/
- DATA XRATE/0.25E0/
- C
- C
- C
- C
- C
- C-----------------------------------------------------------------------
- C BLOCK 1.
- C INITIALIZE. ON THE FIRST CALL,SET
- C THE ORDER TO 1 AND INITIALIZE
- C OTHER VARIABLES.
- C-----------------------------------------------------------------------
- C
- C INITIALIZATIONS FOR ALL CALLS
- C***FIRST EXECUTABLE STATEMENT SDASTP
- IDID=1
- XOLD=X
- NCF=0
- NSF=0
- NEF=0
- IF(JSTART .NE. 0) GO TO 120
- C
- C IF THIS IS THE FIRST STEP,PERFORM
- C OTHER INITIALIZATIONS
- IWM(LETF) = 0
- IWM(LCTF) = 0
- K=1
- KOLD=0
- HOLD=0.0E0
- JSTART=1
- PSI(1)=H
- CJOLD = 1.0E0/H
- CJ = CJOLD
- S = 100.E0
- JCALC = -1
- DELNRM=1.0E0
- IPHASE = 0
- NS=0
- 120 CONTINUE
- C
- C
- C
- C
- C
- C-----------------------------------------------------------------------
- C BLOCK 2
- C COMPUTE COEFFICIENTS OF FORMULAS FOR
- C THIS STEP.
- C-----------------------------------------------------------------------
- 200 CONTINUE
- KP1=K+1
- KP2=K+2
- KM1=K-1
- XOLD=X
- IF(H.NE.HOLD.OR.K .NE. KOLD) NS = 0
- NS=MIN(NS+1,KOLD+2)
- NSP1=NS+1
- IF(KP1 .LT. NS)GO TO 230
- C
- BETA(1)=1.0E0
- ALPHA(1)=1.0E0
- TEMP1=H
- GAMMA(1)=0.0E0
- SIGMA(1)=1.0E0
- DO 210 I=2,KP1
- TEMP2=PSI(I-1)
- PSI(I-1)=TEMP1
- BETA(I)=BETA(I-1)*PSI(I-1)/TEMP2
- TEMP1=TEMP2+H
- ALPHA(I)=H/TEMP1
- SIGMA(I)=(I-1)*SIGMA(I-1)*ALPHA(I)
- GAMMA(I)=GAMMA(I-1)+ALPHA(I-1)/H
- 210 CONTINUE
- PSI(KP1)=TEMP1
- 230 CONTINUE
- C
- C COMPUTE ALPHAS, ALPHA0
- ALPHAS = 0.0E0
- ALPHA0 = 0.0E0
- DO 240 I = 1,K
- ALPHAS = ALPHAS - 1.0E0/I
- ALPHA0 = ALPHA0 - ALPHA(I)
- 240 CONTINUE
- C
- C COMPUTE LEADING COEFFICIENT CJ
- CJLAST = CJ
- CJ = -ALPHAS/H
- C
- C COMPUTE VARIABLE STEPSIZE ERROR COEFFICIENT CK
- CK = ABS(ALPHA(KP1) + ALPHAS - ALPHA0)
- CK = MAX(CK,ALPHA(KP1))
- C
- C DECIDE WHETHER NEW JACOBIAN IS NEEDED
- TEMP1 = (1.0E0 - XRATE)/(1.0E0 + XRATE)
- TEMP2 = 1.0E0/TEMP1
- IF (CJ/CJOLD .LT. TEMP1 .OR. CJ/CJOLD .GT. TEMP2) JCALC = -1
- IF (CJ .NE. CJLAST) S = 100.E0
- C
- C CHANGE PHI TO PHI STAR
- IF(KP1 .LT. NSP1) GO TO 280
- DO 270 J=NSP1,KP1
- DO 260 I=1,NEQ
- 260 PHI(I,J)=BETA(J)*PHI(I,J)
- 270 CONTINUE
- 280 CONTINUE
- C
- C UPDATE TIME
- X=X+H
- C
- C
- C
- C
- C
- C-----------------------------------------------------------------------
- C BLOCK 3
- C PREDICT THE SOLUTION AND DERIVATIVE,
- C AND SOLVE THE CORRECTOR EQUATION
- C-----------------------------------------------------------------------
- C
- C FIRST,PREDICT THE SOLUTION AND DERIVATIVE
- 300 CONTINUE
- DO 310 I=1,NEQ
- Y(I)=PHI(I,1)
- 310 YPRIME(I)=0.0E0
- DO 330 J=2,KP1
- DO 320 I=1,NEQ
- Y(I)=Y(I)+PHI(I,J)
- 320 YPRIME(I)=YPRIME(I)+GAMMA(J)*PHI(I,J)
- 330 CONTINUE
- PNORM = SDANRM (NEQ,Y,WT,RPAR,IPAR)
- C
- C
- C
- C SOLVE THE CORRECTOR EQUATION USING A
- C MODIFIED NEWTON SCHEME.
- CONVGD= .TRUE.
- M=0
- IWM(LNRE)=IWM(LNRE)+1
- IRES = 0
- CALL RES(X,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
- IF (IRES .LT. 0) GO TO 380
- C
- C
- C IF INDICATED,REEVALUATE THE
- C ITERATION MATRIX PD = DG/DY + CJ*DG/DYPRIME
- C (WHERE G(X,Y,YPRIME)=0). SET
- C JCALC TO 0 AS AN INDICATOR THAT
- C THIS HAS BEEN DONE.
- IF(JCALC .NE. -1)GO TO 340
- IWM(LNJE)=IWM(LNJE)+1
- JCALC=0
- CALL SDAJAC(NEQ,X,Y,YPRIME,DELTA,CJ,H,
- * IER,WT,E,WM,IWM,RES,IRES,UROUND,JAC,RPAR,
- * IPAR,NTEMP)
- CJOLD=CJ
- S = 100.E0
- IF (IRES .LT. 0) GO TO 380
- IF(IER .NE. 0)GO TO 380
- NSF=0
- C
- C
- C INITIALIZE THE ERROR ACCUMULATION VECTOR E.
- 340 CONTINUE
- DO 345 I=1,NEQ
- 345 E(I)=0.0E0
- C
- C
- C CORRECTOR LOOP.
- 350 CONTINUE
- C
- C MULTIPLY RESIDUAL BY TEMP1 TO ACCELERATE CONVERGENCE
- TEMP1 = 2.0E0/(1.0E0 + CJ/CJOLD)
- DO 355 I = 1,NEQ
- 355 DELTA(I) = DELTA(I) * TEMP1
- C
- C COMPUTE A NEW ITERATE (BACK-SUBSTITUTION).
- C STORE THE CORRECTION IN DELTA.
- CALL SDASLV(NEQ,DELTA,WM,IWM)
- C
- C UPDATE Y, E, AND YPRIME
- DO 360 I=1,NEQ
- Y(I)=Y(I)-DELTA(I)
- E(I)=E(I)-DELTA(I)
- 360 YPRIME(I)=YPRIME(I)-CJ*DELTA(I)
- C
- C TEST FOR CONVERGENCE OF THE ITERATION
- DELNRM=SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
- IF (DELNRM .LE. 100.E0*UROUND*PNORM) GO TO 375
- IF (M .GT. 0) GO TO 365
- OLDNRM = DELNRM
- GO TO 367
- 365 RATE = (DELNRM/OLDNRM)**(1.0E0/M)
- IF (RATE .GT. 0.90E0) GO TO 370
- S = RATE/(1.0E0 - RATE)
- 367 IF (S*DELNRM .LE. 0.33E0) GO TO 375
- C
- C THE CORRECTOR HAS NOT YET CONVERGED.
- C UPDATE M AND TEST WHETHER THE
- C MAXIMUM NUMBER OF ITERATIONS HAVE
- C BEEN TRIED.
- M=M+1
- IF(M.GE.MAXIT)GO TO 370
- C
- C EVALUATE THE RESIDUAL
- C AND GO BACK TO DO ANOTHER ITERATION
- IWM(LNRE)=IWM(LNRE)+1
- IRES = 0
- CALL RES(X,Y,YPRIME,DELTA,IRES,
- * RPAR,IPAR)
- IF (IRES .LT. 0) GO TO 380
- GO TO 350
- C
- C
- C THE CORRECTOR FAILED TO CONVERGE IN MAXIT
- C ITERATIONS. IF THE ITERATION MATRIX
- C IS NOT CURRENT,RE-DO THE STEP WITH
- C A NEW ITERATION MATRIX.
- 370 CONTINUE
- IF(JCALC.EQ.0)GO TO 380
- JCALC=-1
- GO TO 300
- C
- C
- C THE ITERATION HAS CONVERGED. IF NONNEGATIVITY OF SOLUTION IS
- C REQUIRED, SET THE SOLUTION NONNEGATIVE, IF THE PERTURBATION
- C TO DO IT IS SMALL ENOUGH. IF THE CHANGE IS TOO LARGE, THEN
- C CONSIDER THE CORRECTOR ITERATION TO HAVE FAILED.
- 375 IF(NONNEG .EQ. 0) GO TO 390
- DO 377 I = 1,NEQ
- 377 DELTA(I) = MIN(Y(I),0.0E0)
- DELNRM = SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
- IF(DELNRM .GT. 0.33E0) GO TO 380
- DO 378 I = 1,NEQ
- 378 E(I) = E(I) - DELTA(I)
- GO TO 390
- C
- C
- C EXITS FROM BLOCK 3
- C NO CONVERGENCE WITH CURRENT ITERATION
- C MATRIX,OR SINGULAR ITERATION MATRIX
- 380 CONVGD= .FALSE.
- 390 JCALC = 1
- IF(.NOT.CONVGD)GO TO 600
- C
- C
- C
- C
- C
- C-----------------------------------------------------------------------
- C BLOCK 4
- C ESTIMATE THE ERRORS AT ORDERS K,K-1,K-2
- C AS IF CONSTANT STEPSIZE WAS USED. ESTIMATE
- C THE LOCAL ERROR AT ORDER K AND TEST
- C WHETHER THE CURRENT STEP IS SUCCESSFUL.
- C-----------------------------------------------------------------------
- C
- C ESTIMATE ERRORS AT ORDERS K,K-1,K-2
- ENORM = SDANRM(NEQ,E,WT,RPAR,IPAR)
- ERK = SIGMA(K+1)*ENORM
- TERK = (K+1)*ERK
- EST = ERK
- KNEW=K
- IF(K .EQ. 1)GO TO 430
- DO 405 I = 1,NEQ
- 405 DELTA(I) = PHI(I,KP1) + E(I)
- ERKM1=SIGMA(K)*SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
- TERKM1 = K*ERKM1
- IF(K .GT. 2)GO TO 410
- IF(TERKM1 .LE. 0.5E0*TERK)GO TO 420
- GO TO 430
- 410 CONTINUE
- DO 415 I = 1,NEQ
- 415 DELTA(I) = PHI(I,K) + DELTA(I)
- ERKM2=SIGMA(K-1)*SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
- TERKM2 = (K-1)*ERKM2
- IF(MAX(TERKM1,TERKM2).GT.TERK)GO TO 430
- C LOWER THE ORDER
- 420 CONTINUE
- KNEW=K-1
- EST = ERKM1
- C
- C
- C CALCULATE THE LOCAL ERROR FOR THE CURRENT STEP
- C TO SEE IF THE STEP WAS SUCCESSFUL
- 430 CONTINUE
- ERR = CK * ENORM
- IF(ERR .GT. 1.0E0)GO TO 600
- C
- C
- C
- C
- C
- C-----------------------------------------------------------------------
- C BLOCK 5
- C THE STEP IS SUCCESSFUL. DETERMINE
- C THE BEST ORDER AND STEPSIZE FOR
- C THE NEXT STEP. UPDATE THE DIFFERENCES
- C FOR THE NEXT STEP.
- C-----------------------------------------------------------------------
- IDID=1
- IWM(LNST)=IWM(LNST)+1
- KDIFF=K-KOLD
- KOLD=K
- HOLD=H
- C
- C
- C ESTIMATE THE ERROR AT ORDER K+1 UNLESS:
- C ALREADY DECIDED TO LOWER ORDER, OR
- C ALREADY USING MAXIMUM ORDER, OR
- C STEPSIZE NOT CONSTANT, OR
- C ORDER RAISED IN PREVIOUS STEP
- IF(KNEW.EQ.KM1.OR.K.EQ.IWM(LMXORD))IPHASE=1
- IF(IPHASE .EQ. 0)GO TO 545
- IF(KNEW.EQ.KM1)GO TO 540
- IF(K.EQ.IWM(LMXORD)) GO TO 550
- IF(KP1.GE.NS.OR.KDIFF.EQ.1)GO TO 550
- DO 510 I=1,NEQ
- 510 DELTA(I)=E(I)-PHI(I,KP2)
- ERKP1 = (1.0E0/(K+2))*SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
- TERKP1 = (K+2)*ERKP1
- IF(K.GT.1)GO TO 520
- IF(TERKP1.GE.0.5E0*TERK)GO TO 550
- GO TO 530
- 520 IF(TERKM1.LE.MIN(TERK,TERKP1))GO TO 540
- IF(TERKP1.GE.TERK.OR.K.EQ.IWM(LMXORD))GO TO 550
- C
- C RAISE ORDER
- 530 K=KP1
- EST = ERKP1
- GO TO 550
- C
- C LOWER ORDER
- 540 K=KM1
- EST = ERKM1
- GO TO 550
- C
- C IF IPHASE = 0, INCREASE ORDER BY ONE AND MULTIPLY STEPSIZE BY
- C FACTOR TWO
- 545 K = KP1
- HNEW = H*2.0E0
- H = HNEW
- GO TO 575
- C
- C
- C DETERMINE THE APPROPRIATE STEPSIZE FOR
- C THE NEXT STEP.
- 550 HNEW=H
- TEMP2=K+1
- R=(2.0E0*EST+0.0001E0)**(-1.0E0/TEMP2)
- IF(R .LT. 2.0E0) GO TO 555
- HNEW = 2.0E0*H
- GO TO 560
- 555 IF(R .GT. 1.0E0) GO TO 560
- R = MAX(0.5E0,MIN(0.9E0,R))
- HNEW = H*R
- 560 H=HNEW
- C
- C
- C UPDATE DIFFERENCES FOR NEXT STEP
- 575 CONTINUE
- IF(KOLD.EQ.IWM(LMXORD))GO TO 585
- DO 580 I=1,NEQ
- 580 PHI(I,KP2)=E(I)
- 585 CONTINUE
- DO 590 I=1,NEQ
- 590 PHI(I,KP1)=PHI(I,KP1)+E(I)
- DO 595 J1=2,KP1
- J=KP1-J1+1
- DO 595 I=1,NEQ
- 595 PHI(I,J)=PHI(I,J)+PHI(I,J+1)
- RETURN
- C
- C
- C
- C
- C
- C-----------------------------------------------------------------------
- C BLOCK 6
- C THE STEP IS UNSUCCESSFUL. RESTORE X,PSI,PHI
- C DETERMINE APPROPRIATE STEPSIZE FOR
- C CONTINUING THE INTEGRATION, OR EXIT WITH
- C AN ERROR FLAG IF THERE HAVE BEEN MANY
- C FAILURES.
- C-----------------------------------------------------------------------
- 600 IPHASE = 1
- C
- C RESTORE X,PHI,PSI
- X=XOLD
- IF(KP1.LT.NSP1)GO TO 630
- DO 620 J=NSP1,KP1
- TEMP1=1.0E0/BETA(J)
- DO 610 I=1,NEQ
- 610 PHI(I,J)=TEMP1*PHI(I,J)
- 620 CONTINUE
- 630 CONTINUE
- DO 640 I=2,KP1
- 640 PSI(I-1)=PSI(I)-H
- C
- C
- C TEST WHETHER FAILURE IS DUE TO CORRECTOR ITERATION
- C OR ERROR TEST
- IF(CONVGD)GO TO 660
- IWM(LCTF)=IWM(LCTF)+1
- C
- C
- C THE NEWTON ITERATION FAILED TO CONVERGE WITH
- C A CURRENT ITERATION MATRIX. DETERMINE THE CAUSE
- C OF THE FAILURE AND TAKE APPROPRIATE ACTION.
- IF(IER.EQ.0)GO TO 650
- C
- C THE ITERATION MATRIX IS SINGULAR. REDUCE
- C THE STEPSIZE BY A FACTOR OF 4. IF
- C THIS HAPPENS THREE TIMES IN A ROW ON
- C THE SAME STEP, RETURN WITH AN ERROR FLAG
- NSF=NSF+1
- R = 0.25E0
- H=H*R
- IF (NSF .LT. 3 .AND. ABS(H) .GE. HMIN) GO TO 690
- IDID=-8
- GO TO 675
- C
- C
- C THE NEWTON ITERATION FAILED TO CONVERGE FOR A REASON
- C OTHER THAN A SINGULAR ITERATION MATRIX. IF IRES = -2, THEN
- C RETURN. OTHERWISE, REDUCE THE STEPSIZE AND TRY AGAIN, UNLESS
- C TOO MANY FAILURES HAVE OCCURRED.
- 650 CONTINUE
- IF (IRES .GT. -2) GO TO 655
- IDID = -11
- GO TO 675
- 655 NCF = NCF + 1
- R = 0.25E0
- H = H*R
- IF (NCF .LT. 10 .AND. ABS(H) .GE. HMIN) GO TO 690
- IDID = -7
- IF (IRES .LT. 0) IDID = -10
- IF (NEF .GE. 3) IDID = -9
- GO TO 675
- C
- C
- C THE NEWTON SCHEME CONVERGED, AND THE CAUSE
- C OF THE FAILURE WAS THE ERROR ESTIMATE
- C EXCEEDING THE TOLERANCE.
- 660 NEF=NEF+1
- IWM(LETF)=IWM(LETF)+1
- IF (NEF .GT. 1) GO TO 665
- C
- C ON FIRST ERROR TEST FAILURE, KEEP CURRENT ORDER OR LOWER
- C ORDER BY ONE. COMPUTE NEW STEPSIZE BASED ON DIFFERENCES
- C OF THE SOLUTION.
- K = KNEW
- TEMP2 = K + 1
- R = 0.90E0*(2.0E0*EST+0.0001E0)**(-1.0E0/TEMP2)
- R = MAX(0.25E0,MIN(0.9E0,R))
- H = H*R
- IF (ABS(H) .GE. HMIN) GO TO 690
- IDID = -6
- GO TO 675
- C
- C ON SECOND ERROR TEST FAILURE, USE THE CURRENT ORDER OR
- C DECREASE ORDER BY ONE. REDUCE THE STEPSIZE BY A FACTOR OF
- C FOUR.
- 665 IF (NEF .GT. 2) GO TO 670
- K = KNEW
- H = 0.25E0*H
- IF (ABS(H) .GE. HMIN) GO TO 690
- IDID = -6
- GO TO 675
- C
- C ON THIRD AND SUBSEQUENT ERROR TEST FAILURES, SET THE ORDER TO
- C ONE AND REDUCE THE STEPSIZE BY A FACTOR OF FOUR.
- 670 K = 1
- H = 0.25E0*H
- IF (ABS(H) .GE. HMIN) GO TO 690
- IDID = -6
- GO TO 675
- C
- C
- C
- C
- C FOR ALL CRASHES, RESTORE Y TO ITS LAST VALUE,
- C INTERPOLATE TO FIND YPRIME AT LAST X, AND RETURN
- 675 CONTINUE
- CALL SDATRP(X,X,Y,YPRIME,NEQ,K,PHI,PSI)
- RETURN
- C
- C
- C GO BACK AND TRY THIS STEP AGAIN
- 690 GO TO 200
- C
- C------END OF SUBROUTINE SDASTP------
- END
|