sgbmv.f 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. *DECK SGBMV
  2. SUBROUTINE SGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
  3. $ BETA, Y, INCY)
  4. C***BEGIN PROLOGUE SGBMV
  5. C***PURPOSE Multiply a real vector by a real general band matrix.
  6. C***LIBRARY SLATEC (BLAS)
  7. C***CATEGORY D1B4
  8. C***TYPE SINGLE PRECISION (SGBMV-S, DGBMV-D, CGBMV-C)
  9. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  10. C***AUTHOR Dongarra, J. J., (ANL)
  11. C Du Croz, J., (NAG)
  12. C Hammarling, S., (NAG)
  13. C Hanson, R. J., (SNLA)
  14. C***DESCRIPTION
  15. C
  16. C SGBMV performs one of the matrix-vector operations
  17. C
  18. C y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
  19. C
  20. C where alpha and beta are scalars, x and y are vectors and A is an
  21. C m by n band matrix, with kl sub-diagonals and ku super-diagonals.
  22. C
  23. C Parameters
  24. C ==========
  25. C
  26. C TRANS - CHARACTER*1.
  27. C On entry, TRANS specifies the operation to be performed as
  28. C follows:
  29. C
  30. C TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
  31. C
  32. C TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
  33. C
  34. C TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C M - INTEGER.
  39. C On entry, M specifies the number of rows of the matrix A.
  40. C M must be at least zero.
  41. C Unchanged on exit.
  42. C
  43. C N - INTEGER.
  44. C On entry, N specifies the number of columns of the matrix A.
  45. C N must be at least zero.
  46. C Unchanged on exit.
  47. C
  48. C KL - INTEGER.
  49. C On entry, KL specifies the number of sub-diagonals of the
  50. C matrix A. KL must satisfy 0 .le. KL.
  51. C Unchanged on exit.
  52. C
  53. C KU - INTEGER.
  54. C On entry, KU specifies the number of super-diagonals of the
  55. C matrix A. KU must satisfy 0 .le. KU.
  56. C Unchanged on exit.
  57. C
  58. C ALPHA - REAL .
  59. C On entry, ALPHA specifies the scalar alpha.
  60. C Unchanged on exit.
  61. C
  62. C A - REAL array of DIMENSION ( LDA, n ).
  63. C Before entry, the leading ( kl + ku + 1 ) by n part of the
  64. C array A must contain the matrix of coefficients, supplied
  65. C column by column, with the leading diagonal of the matrix in
  66. C row ( ku + 1 ) of the array, the first super-diagonal
  67. C starting at position 2 in row ku, the first sub-diagonal
  68. C starting at position 1 in row ( ku + 2 ), and so on.
  69. C Elements in the array A that do not correspond to elements
  70. C in the band matrix (such as the top left ku by ku triangle)
  71. C are not referenced.
  72. C The following program segment will transfer a band matrix
  73. C from conventional full matrix storage to band storage:
  74. C
  75. C DO 20, J = 1, N
  76. C K = KU + 1 - J
  77. C DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
  78. C A( K + I, J ) = matrix( I, J )
  79. C 10 CONTINUE
  80. C 20 CONTINUE
  81. C
  82. C Unchanged on exit.
  83. C
  84. C LDA - INTEGER.
  85. C On entry, LDA specifies the first dimension of A as declared
  86. C in the calling (sub) program. LDA must be at least
  87. C ( kl + ku + 1 ).
  88. C Unchanged on exit.
  89. C
  90. C X - REAL array of DIMENSION at least
  91. C ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  92. C and at least
  93. C ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  94. C Before entry, the incremented array X must contain the
  95. C vector x.
  96. C Unchanged on exit.
  97. C
  98. C INCX - INTEGER.
  99. C On entry, INCX specifies the increment for the elements of
  100. C X. INCX must not be zero.
  101. C Unchanged on exit.
  102. C
  103. C BETA - REAL .
  104. C On entry, BETA specifies the scalar beta. When BETA is
  105. C supplied as zero then Y need not be set on input.
  106. C Unchanged on exit.
  107. C
  108. C Y - REAL array of DIMENSION at least
  109. C ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  110. C and at least
  111. C ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  112. C Before entry, the incremented array Y must contain the
  113. C vector y. On exit, Y is overwritten by the updated vector y.
  114. C
  115. C INCY - INTEGER.
  116. C On entry, INCY specifies the increment for the elements of
  117. C Y. INCY must not be zero.
  118. C Unchanged on exit.
  119. C
  120. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  121. C Hanson, R. J. An extended set of Fortran basic linear
  122. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  123. C pp. 1-17, March 1988.
  124. C***ROUTINES CALLED LSAME, XERBLA
  125. C***REVISION HISTORY (YYMMDD)
  126. C 861022 DATE WRITTEN
  127. C 910605 Modified to meet SLATEC prologue standards. Only comment
  128. C lines were modified. (BKS)
  129. C***END PROLOGUE SGBMV
  130. C .. Scalar Arguments ..
  131. REAL ALPHA, BETA
  132. INTEGER INCX, INCY, KL, KU, LDA, M, N
  133. CHARACTER*1 TRANS
  134. C .. Array Arguments ..
  135. REAL A( LDA, * ), X( * ), Y( * )
  136. REAL ONE , ZERO
  137. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  138. C .. Local Scalars ..
  139. REAL TEMP
  140. INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
  141. $ LENX, LENY
  142. C .. External Functions ..
  143. LOGICAL LSAME
  144. EXTERNAL LSAME
  145. C .. External Subroutines ..
  146. EXTERNAL XERBLA
  147. C .. Intrinsic Functions ..
  148. INTRINSIC MAX, MIN
  149. C***FIRST EXECUTABLE STATEMENT SGBMV
  150. C
  151. C Test the input parameters.
  152. C
  153. INFO = 0
  154. IF ( .NOT.LSAME( TRANS, 'N' ).AND.
  155. $ .NOT.LSAME( TRANS, 'T' ).AND.
  156. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  157. INFO = 1
  158. ELSE IF( M.LT.0 )THEN
  159. INFO = 2
  160. ELSE IF( N.LT.0 )THEN
  161. INFO = 3
  162. ELSE IF( KL.LT.0 )THEN
  163. INFO = 4
  164. ELSE IF( KU.LT.0 )THEN
  165. INFO = 5
  166. ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
  167. INFO = 8
  168. ELSE IF( INCX.EQ.0 )THEN
  169. INFO = 10
  170. ELSE IF( INCY.EQ.0 )THEN
  171. INFO = 13
  172. END IF
  173. IF( INFO.NE.0 )THEN
  174. CALL XERBLA( 'SGBMV ', INFO )
  175. RETURN
  176. END IF
  177. C
  178. C Quick return if possible.
  179. C
  180. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  181. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  182. $ RETURN
  183. C
  184. C Set LENX and LENY, the lengths of the vectors x and y, and set
  185. C up the start points in X and Y.
  186. C
  187. IF( LSAME( TRANS, 'N' ) )THEN
  188. LENX = N
  189. LENY = M
  190. ELSE
  191. LENX = M
  192. LENY = N
  193. END IF
  194. IF( INCX.GT.0 )THEN
  195. KX = 1
  196. ELSE
  197. KX = 1 - ( LENX - 1 )*INCX
  198. END IF
  199. IF( INCY.GT.0 )THEN
  200. KY = 1
  201. ELSE
  202. KY = 1 - ( LENY - 1 )*INCY
  203. END IF
  204. C
  205. C Start the operations. In this version the elements of A are
  206. C accessed sequentially with one pass through the band part of A.
  207. C
  208. C First form y := beta*y.
  209. C
  210. IF( BETA.NE.ONE )THEN
  211. IF( INCY.EQ.1 )THEN
  212. IF( BETA.EQ.ZERO )THEN
  213. DO 10, I = 1, LENY
  214. Y( I ) = ZERO
  215. 10 CONTINUE
  216. ELSE
  217. DO 20, I = 1, LENY
  218. Y( I ) = BETA*Y( I )
  219. 20 CONTINUE
  220. END IF
  221. ELSE
  222. IY = KY
  223. IF( BETA.EQ.ZERO )THEN
  224. DO 30, I = 1, LENY
  225. Y( IY ) = ZERO
  226. IY = IY + INCY
  227. 30 CONTINUE
  228. ELSE
  229. DO 40, I = 1, LENY
  230. Y( IY ) = BETA*Y( IY )
  231. IY = IY + INCY
  232. 40 CONTINUE
  233. END IF
  234. END IF
  235. END IF
  236. IF( ALPHA.EQ.ZERO )
  237. $ RETURN
  238. KUP1 = KU + 1
  239. IF( LSAME( TRANS, 'N' ) )THEN
  240. C
  241. C Form y := alpha*A*x + y.
  242. C
  243. JX = KX
  244. IF( INCY.EQ.1 )THEN
  245. DO 60, J = 1, N
  246. IF( X( JX ).NE.ZERO )THEN
  247. TEMP = ALPHA*X( JX )
  248. K = KUP1 - J
  249. DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
  250. Y( I ) = Y( I ) + TEMP*A( K + I, J )
  251. 50 CONTINUE
  252. END IF
  253. JX = JX + INCX
  254. 60 CONTINUE
  255. ELSE
  256. DO 80, J = 1, N
  257. IF( X( JX ).NE.ZERO )THEN
  258. TEMP = ALPHA*X( JX )
  259. IY = KY
  260. K = KUP1 - J
  261. DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
  262. Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
  263. IY = IY + INCY
  264. 70 CONTINUE
  265. END IF
  266. JX = JX + INCX
  267. IF( J.GT.KU )
  268. $ KY = KY + INCY
  269. 80 CONTINUE
  270. END IF
  271. ELSE
  272. C
  273. C Form y := alpha*A'*x + y.
  274. C
  275. JY = KY
  276. IF( INCX.EQ.1 )THEN
  277. DO 100, J = 1, N
  278. TEMP = ZERO
  279. K = KUP1 - J
  280. DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
  281. TEMP = TEMP + A( K + I, J )*X( I )
  282. 90 CONTINUE
  283. Y( JY ) = Y( JY ) + ALPHA*TEMP
  284. JY = JY + INCY
  285. 100 CONTINUE
  286. ELSE
  287. DO 120, J = 1, N
  288. TEMP = ZERO
  289. IX = KX
  290. K = KUP1 - J
  291. DO 110, I = MAX( 1, J - KU ), MIN( M, J + KL )
  292. TEMP = TEMP + A( K + I, J )*X( IX )
  293. IX = IX + INCX
  294. 110 CONTINUE
  295. Y( JY ) = Y( JY ) + ALPHA*TEMP
  296. JY = JY + INCY
  297. IF( J.GT.KU )
  298. $ KX = KX + INCX
  299. 120 CONTINUE
  300. END IF
  301. END IF
  302. C
  303. RETURN
  304. C
  305. C End of SGBMV .
  306. C
  307. END