123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- *DECK SGEIR
- SUBROUTINE SGEIR (A, LDA, N, V, ITASK, IND, WORK, IWORK)
- C***BEGIN PROLOGUE SGEIR
- C***PURPOSE Solve a general system of linear equations. Iterative
- C refinement is used to obtain an error estimate.
- C***LIBRARY SLATEC
- C***CATEGORY D2A1
- C***TYPE SINGLE PRECISION (SGEIR-S, CGEIR-C)
- C***KEYWORDS COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
- C GENERAL SYSTEM OF LINEAR EQUATIONS
- C***AUTHOR Voorhees, E. A., (LANL)
- C***DESCRIPTION
- C
- C Subroutine SGEIR solves a general NxN system of single
- C precision linear equations using LINPACK subroutines SGEFA and
- C SGESL. One pass of iterative refinement is used only to obtain
- C an estimate of the accuracy. That is, if A is an NxN real
- C matrix and if X and B are real N-vectors, then SGEIR solves
- C the equation
- C
- C A*X=B.
- C
- C The matrix A is first factored into upper and lower tri-
- C angular matrices U and L using partial pivoting. These
- C factors and the pivoting information are used to calculate
- C the solution, X. Then the residual vector is found and
- C used to calculate an estimate of the relative error, IND.
- C IND estimates the accuracy of the solution only when the
- C input matrix and the right hand side are represented
- C exactly in the computer and does not take into account
- C any errors in the input data.
- C
- C If the equation A*X=B is to be solved for more than one vector
- C B, the factoring of A does not need to be performed again and
- C the option to solve only (ITASK .GT. 1) will be faster for
- C the succeeding solutions. In this case, the contents of A,
- C LDA, N, WORK, and IWORK must not have been altered by the
- C user following factorization (ITASK=1). IND will not be
- C changed by SGEIR in this case.
- C
- C Argument Description ***
- C
- C A REAL(LDA,N)
- C the doubly subscripted array with dimension (LDA,N)
- C which contains the coefficient matrix. A is not
- C altered by the routine.
- C LDA INTEGER
- C the leading dimension of the array A. LDA must be great-
- C er than or equal to N. (terminal error message IND=-1)
- C N INTEGER
- C the order of the matrix A. The first N elements of
- C the array A are the elements of the first column of
- C matrix A. N must be greater than or equal to 1.
- C (terminal error message IND=-2)
- C V REAL(N)
- C on entry, the singly subscripted array(vector) of di-
- C mension N which contains the right hand side B of a
- C system of simultaneous linear equations A*X=B.
- C on return, V contains the solution vector, X .
- C ITASK INTEGER
- C If ITASK=1, the matrix A is factored and then the
- C linear equation is solved.
- C If ITASK .GT. 1, the equation is solved using the existing
- C factored matrix A (stored in WORK).
- C If ITASK .LT. 1, then terminal error message IND=-3 is
- C printed.
- C IND INTEGER
- C GT. 0 IND is a rough estimate of the number of digits
- C of accuracy in the solution, X. IND=75 means
- C that the solution vector X is zero.
- C LT. 0 see error message corresponding to IND below.
- C WORK REAL(N*(N+1))
- C a singly subscripted array of dimension at least N*(N+1).
- C IWORK INTEGER(N)
- C a singly subscripted array of dimension at least N.
- C
- C Error Messages Printed ***
- C
- C IND=-1 terminal N is greater than LDA.
- C IND=-2 terminal N is less than one.
- C IND=-3 terminal ITASK is less than one.
- C IND=-4 terminal The matrix A is computationally singular.
- C A solution has not been computed.
- C IND=-10 warning The solution has no apparent significance.
- C The solution may be inaccurate or the matrix
- C A may be poorly scaled.
- C
- C Note- The above terminal(*fatal*) error messages are
- C designed to be handled by XERMSG in which
- C LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
- C for warning error messages from XERMSG. Unless
- C the user provides otherwise, an error message
- C will be printed followed by an abort.
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED R1MACH, SASUM, SCOPY, SDSDOT, SGEFA, SGESL, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800430 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE SGEIR
- C
- INTEGER LDA,N,ITASK,IND,IWORK(*),INFO,J
- REAL A(LDA,*),V(*),WORK(N,*),XNORM,DNORM,SDSDOT,SASUM,R1MACH
- CHARACTER*8 XERN1, XERN2
- C***FIRST EXECUTABLE STATEMENT SGEIR
- IF (LDA.LT.N) THEN
- IND = -1
- WRITE (XERN1, '(I8)') LDA
- WRITE (XERN2, '(I8)') N
- CALL XERMSG ('SLATEC', 'SGEIR', 'LDA = ' // XERN1 //
- * ' IS LESS THAN N = ' // XERN2, -1, 1)
- RETURN
- ENDIF
- C
- IF (N.LE.0) THEN
- IND = -2
- WRITE (XERN1, '(I8)') N
- CALL XERMSG ('SLATEC', 'SGEIR', 'N = ' // XERN1 //
- * ' IS LESS THAN 1', -2, 1)
- RETURN
- ENDIF
- C
- IF (ITASK.LT.1) THEN
- IND = -3
- WRITE (XERN1, '(I8)') ITASK
- CALL XERMSG ('SLATEC', 'SGEIR', 'ITASK = ' // XERN1 //
- * ' IS LESS THAN 1', -3, 1)
- RETURN
- ENDIF
- C
- IF (ITASK.EQ.1) THEN
- C
- C MOVE MATRIX A TO WORK
- C
- DO 10 J=1,N
- CALL SCOPY(N,A(1,J),1,WORK(1,J),1)
- 10 CONTINUE
- C
- C FACTOR MATRIX A INTO LU
- C
- CALL SGEFA(WORK,N,N,IWORK,INFO)
- C
- C CHECK FOR COMPUTATIONALLY SINGULAR MATRIX
- C
- IF (INFO.NE.0) THEN
- IND = -4
- CALL XERMSG ('SLATEC', 'SGEIR',
- * 'SINGULAR MATRIX A - NO SOLUTION', -4, 1)
- RETURN
- ENDIF
- ENDIF
- C
- C SOLVE WHEN FACTORING COMPLETE
- C MOVE VECTOR B TO WORK
- C
- CALL SCOPY(N,V(1),1,WORK(1,N+1),1)
- CALL SGESL(WORK,N,N,IWORK,V,0)
- C
- C FORM NORM OF X0
- C
- XNORM=SASUM(N,V(1),1)
- IF (XNORM.EQ.0.0) THEN
- IND = 75
- RETURN
- ENDIF
- C
- C COMPUTE RESIDUAL
- C
- DO 40 J=1,N
- WORK(J,N+1) = SDSDOT(N,-WORK(J,N+1),A(J,1),LDA,V,1)
- 40 CONTINUE
- C
- C SOLVE A*DELTA=R
- C
- CALL SGESL(WORK,N,N,IWORK,WORK(1,N+1),0)
- C
- C FORM NORM OF DELTA
- C
- DNORM = SASUM(N,WORK(1,N+1),1)
- C
- C COMPUTE IND (ESTIMATE OF NO. OF SIGNIFICANT DIGITS)
- C AND CHECK FOR IND GREATER THAN ZERO
- C
- IND = -LOG10(MAX(R1MACH(4),DNORM/XNORM))
- IF (IND.LE.0) THEN
- IND = -10
- CALL XERMSG ('SLATEC', 'SGEIR',
- * 'SOLUTION MAY HAVE NO SIGNIFICANCE', -10, 0)
- ENDIF
- RETURN
- END
|