123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- *DECK SLLTI2
- SUBROUTINE SLLTI2 (N, B, X, NEL, IEL, JEL, EL, DINV)
- C***BEGIN PROLOGUE SLLTI2
- C***PURPOSE SLAP Backsolve routine for LDL' Factorization.
- C Routine to solve a system of the form L*D*L' X = B,
- C where L is a unit lower triangular matrix and D is a
- C diagonal matrix and ' means transpose.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2E
- C***TYPE SINGLE PRECISION (SLLTI2-S, DLLTI2-D)
- C***KEYWORDS INCOMPLETE FACTORIZATION, ITERATIVE PRECONDITION, SLAP,
- C SPARSE, SYMMETRIC LINEAR SYSTEM SOLVE
- C***AUTHOR Greenbaum, Anne, (Courant Institute)
- C Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NEL, IEL(NEL), JEL(NEL)
- C REAL B(N), X(N), EL(NEL), DINV(N)
- C
- C CALL SLLTI2( N, B, X, NEL, IEL, JEL, EL, DINV )
- C
- C *Arguments:
- C N :IN Integer
- C Order of the Matrix.
- C B :IN Real B(N).
- C Right hand side vector.
- C X :OUT Real X(N).
- C Solution to L*D*L' x = b.
- C NEL :IN Integer.
- C Number of non-zeros in the EL array.
- C IEL :IN Integer IEL(NEL).
- C JEL :IN Integer JEL(NEL).
- C EL :IN Real EL(NEL).
- C IEL, JEL, EL contain the unit lower triangular factor of
- C the incomplete decomposition of the A matrix stored in
- C SLAP Row format. The diagonal of ones *IS* stored. This
- C structure can be set up by the SS2LT routine. See the
- C "Description", below for more details about the SLAP Row
- C format.
- C DINV :IN Real DINV(N).
- C Inverse of the diagonal matrix D.
- C
- C *Description:
- C This routine is supplied with the SLAP package as a routine
- C to perform the MSOLVE operation in the SCG iteration routine
- C for the driver routine SSICCG. It must be called via the
- C SLAP MSOLVE calling sequence convention interface routine
- C SSLLI.
- C **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
- C **** SLAP MSOLVE CALLING CONVENTION ****
- C
- C IEL, JEL, EL should contain the unit lower triangular factor
- C of the incomplete decomposition of the A matrix stored in
- C SLAP Row format. This IC factorization can be computed by
- C the SSICS routine. The diagonal (which is all one's) is
- C stored.
- C
- C ==================== S L A P Row format ====================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Row format. In this format the non-zeros are stored
- C counting across rows (except for the diagonal entry, which
- C must appear first in each "row") and are stored in the real
- C array A. In other words, for each row in the matrix put the
- C diagonal entry in A. Then put in the other non-zero
- C elements going across the row (except the diagonal) in
- C order. The JA array holds the column index for each
- C non-zero. The IA array holds the offsets into the JA, A
- C arrays for the beginning of each row. That is,
- C JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
- C IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
- C points to the end of the IROW-th row. Note that we always
- C have IA(N+1) = NELT+1, where N is the number of rows in
- C the matrix and NELT is the number of non-zeros in the
- C matrix.
- C
- C Here is an example of the SLAP Row storage format for a 5x5
- C Matrix (in the A and JA arrays '|' denotes the end of a row):
- C
- C 5x5 Matrix SLAP Row format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
- C |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| IA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C With the SLAP Row format the "inner loop" of this routine
- C should vectorize on machines with hardware support for
- C vector gather/scatter operations. Your compiler may require
- C a compiler directive to convince it that there are no
- C implicit vector dependencies. Compiler directives for the
- C Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
- C with the standard SLAP distribution.
- C
- C***SEE ALSO SSICCG, SSICS
- C***REFERENCES (NONE)
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 871119 DATE WRITTEN
- C 881213 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 920511 Added complete declaration section. (WRB)
- C 921113 Corrected C***CATEGORY line. (FNF)
- C 930701 Updated CATEGORY section. (FNF, WRB)
- C***END PROLOGUE SLLTI2
- C .. Scalar Arguments ..
- INTEGER N, NEL
- C .. Array Arguments ..
- REAL B(N), DINV(N), EL(NEL), X(N)
- INTEGER IEL(NEL), JEL(NEL)
- C .. Local Scalars ..
- INTEGER I, IBGN, IEND, IROW
- C***FIRST EXECUTABLE STATEMENT SLLTI2
- C
- C Solve L*y = b, storing result in x.
- C
- DO 10 I=1,N
- X(I) = B(I)
- 10 CONTINUE
- DO 30 IROW = 1, N
- IBGN = IEL(IROW) + 1
- IEND = IEL(IROW+1) - 1
- IF( IBGN.LE.IEND ) THEN
- CLLL. OPTION ASSERT (NOHAZARD)
- CDIR$ IVDEP
- CVD$ NOCONCUR
- CVD$ NODEPCHK
- DO 20 I = IBGN, IEND
- X(IROW) = X(IROW) - EL(I)*X(JEL(I))
- 20 CONTINUE
- ENDIF
- 30 CONTINUE
- C
- C Solve D*Z = Y, storing result in X.
- C
- DO 40 I=1,N
- X(I) = X(I)*DINV(I)
- 40 CONTINUE
- C
- C Solve L-trans*X = Z.
- C
- DO 60 IROW = N, 2, -1
- IBGN = IEL(IROW) + 1
- IEND = IEL(IROW+1) - 1
- IF( IBGN.LE.IEND ) THEN
- CLLL. OPTION ASSERT (NOHAZARD)
- CDIR$ IVDEP
- CVD$ NOCONCUR
- CVD$ NODEPCHK
- DO 50 I = IBGN, IEND
- X(JEL(I)) = X(JEL(I)) - EL(I)*X(IROW)
- 50 CONTINUE
- ENDIF
- 60 CONTINUE
- C
- RETURN
- C------------- LAST LINE OF SLLTI2 FOLLOWS ----------------------------
- END
|