123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- *DECK SNBCO
- SUBROUTINE SNBCO (ABE, LDA, N, ML, MU, IPVT, RCOND, Z)
- C***BEGIN PROLOGUE SNBCO
- C***PURPOSE Factor a band matrix using Gaussian elimination and
- C estimate the condition number.
- C***LIBRARY SLATEC
- C***CATEGORY D2A2
- C***TYPE SINGLE PRECISION (SNBCO-S, DNBCO-D, CNBCO-C)
- C***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
- C NONSYMMETRIC
- C***AUTHOR Voorhees, E. A., (LANL)
- C***DESCRIPTION
- C
- C SNBCO factors a real band matrix by Gaussian
- C elimination and estimates the condition of the matrix.
- C
- C If RCOND is not needed, SNBFA is slightly faster.
- C To solve A*X = B , follow SNBCO by SNBSL.
- C To compute INVERSE(A)*C , follow SNBCO by SNBSL.
- C To compute DETERMINANT(A) , follow SNBCO by SNBDI.
- C
- C On Entry
- C
- C ABE REAL(LDA, NC)
- C contains the matrix in band storage. The rows
- C of the original matrix are stored in the rows
- C of ABE and the diagonals of the original matrix
- C are stored in columns 1 through ML+MU+1 of ABE.
- C NC must be .GE. 2*ML+MU+1 .
- C See the comments below for details.
- C
- C LDA INTEGER
- C the leading dimension of the array ABE.
- C LDA must be .GE. N .
- C
- C N INTEGER
- C the order of the original matrix.
- C
- C ML INTEGER
- C number of diagonals below the main diagonal.
- C 0 .LE. ML .LT. N .
- C
- C MU INTEGER
- C number of diagonals above the main diagonal.
- C 0 .LE. MU .LT. N .
- C More efficient if ML .LE. MU .
- C
- C On Return
- C
- C ABE an upper triangular matrix in band storage
- C and the multipliers which were used to obtain it.
- C The factorization can be written A = L*U , where
- C L is a product of permutation and unit lower
- C triangular matrices and U is upper triangular.
- C
- C IPVT INTEGER(N)
- C an integer vector of pivot indices.
- C
- C RCOND REAL
- C an estimate of the reciprocal condition of A .
- C For the system A*X = B , relative perturbations
- C in A and B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then A may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows.
- C
- C Z REAL(N)
- C a work vector whose contents are usually unimportant.
- C If A is close to a singular matrix, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C Band Storage
- C
- C If A is a band matrix, the following program segment
- C will set up the input.
- C
- C ML = (band width below the diagonal)
- C MU = (band width above the diagonal)
- C DO 20 I = 1, N
- C J1 = MAX(1, I-ML)
- C J2 = MIN(N, I+MU)
- C DO 10 J = J1, J2
- C K = J - I + ML + 1
- C ABE(I,K) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C This uses columns 1 through ML+MU+1 of ABE .
- C Furthermore, ML additional columns are needed in
- C ABE starting with column ML+MU+2 for elements
- C generated during the triangularization. The total
- C number of columns needed in ABE is 2*ML+MU+1 .
- C
- C Example: If the original matrix is
- C
- C 11 12 13 0 0 0
- C 21 22 23 24 0 0
- C 0 32 33 34 35 0
- C 0 0 43 44 45 46
- C 0 0 0 54 55 56
- C 0 0 0 0 65 66
- C
- C then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain
- C
- C * 11 12 13 + , * = not used
- C 21 22 23 24 + , + = used for pivoting
- C 32 33 34 35 +
- C 43 44 45 46 +
- C 54 55 56 * +
- C 65 66 * * +
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED SASUM, SAXPY, SDOT, SNBFA, SSCAL
- C***REVISION HISTORY (YYMMDD)
- C 800723 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE SNBCO
- INTEGER LDA,N,ML,MU,IPVT(*)
- REAL ABE(LDA,*),Z(*)
- REAL RCOND
- C
- REAL SDOT,EK,T,WK,WKM
- REAL ANORM,S,SASUM,SM,YNORM
- INTEGER I,INFO,J,JU,K,KB,KP1,L,LDB,LM,LZ,M,ML1,MM,NL,NU
- C***FIRST EXECUTABLE STATEMENT SNBCO
- ML1=ML+1
- LDB = LDA - 1
- ANORM = 0.0E0
- DO 10 J = 1, N
- NU = MIN(MU,J-1)
- NL = MIN(ML,N-J)
- L = 1 + NU + NL
- ANORM = MAX(ANORM,SASUM(L,ABE(J+NL,ML1-NL),LDB))
- 10 CONTINUE
- C
- C FACTOR
- C
- CALL SNBFA(ABE,LDA,N,ML,MU,IPVT,INFO)
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND TRANS(A)*Y = E .
- C TRANS(A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
- C CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
- C TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
- C OVERFLOW.
- C
- C SOLVE TRANS(U)*W = E
- C
- EK = 1.0E0
- DO 20 J = 1, N
- Z(J) = 0.0E0
- 20 CONTINUE
- M = ML + MU + 1
- JU = 0
- DO 100 K = 1, N
- IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,-Z(K))
- IF (ABS(EK-Z(K)) .LE. ABS(ABE(K,ML1))) GO TO 30
- S = ABS(ABE(K,ML1))/ABS(EK-Z(K))
- CALL SSCAL(N,S,Z,1)
- EK = S*EK
- 30 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = ABS(WK)
- SM = ABS(WKM)
- IF (ABE(K,ML1) .EQ. 0.0E0) GO TO 40
- WK = WK/ABE(K,ML1)
- WKM = WKM/ABE(K,ML1)
- GO TO 50
- 40 CONTINUE
- WK = 1.0E0
- WKM = 1.0E0
- 50 CONTINUE
- KP1 = K + 1
- JU = MIN(MAX(JU,MU+IPVT(K)),N)
- MM = ML1
- IF (KP1 .GT. JU) GO TO 90
- DO 60 I = KP1, JU
- MM = MM + 1
- SM = SM + ABS(Z(I)+WKM*ABE(K,MM))
- Z(I) = Z(I) + WK*ABE(K,MM)
- S = S + ABS(Z(I))
- 60 CONTINUE
- IF (S .GE. SM) GO TO 80
- T = WKM -WK
- WK = WKM
- MM = ML1
- DO 70 I = KP1, JU
- MM = MM + 1
- Z(I) = Z(I) + T*ABE(K,MM)
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- Z(K) = WK
- 100 CONTINUE
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- C
- C SOLVE TRANS(L)*Y = W
- C
- DO 120 KB = 1, N
- K = N + 1 - KB
- NL = MIN(ML,N-K)
- IF (K .LT. N) Z(K) = Z(K) + SDOT(NL,ABE(K+NL,ML1-NL),-LDB,Z(K+1)
- 1 ,1)
- IF (ABS(Z(K)) .LE. 1.0E0) GO TO 110
- S = 1.0E0/ABS(Z(K))
- CALL SSCAL(N,S,Z,1)
- 110 CONTINUE
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- 120 CONTINUE
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- C
- YNORM = 1.0E0
- C
- C SOLVE L*V = Y
- C
- DO 140 K = 1, N
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- NL = MIN(ML,N-K)
- IF (K .LT. N) CALL SAXPY(NL,T,ABE(K+NL,ML1-NL),-LDB,Z(K+1),1)
- IF (ABS(Z(K)) .LE. 1.0E0) GO TO 130
- S = 1.0E0/ABS(Z(K))
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 130 CONTINUE
- 140 CONTINUE
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE U*Z = V
- C
- DO 160 KB = 1, N
- K = N + 1 - KB
- IF (ABS(Z(K)) .LE. ABS(ABE(K,ML1))) GO TO 150
- S = ABS(ABE(K,ML1))/ABS(Z(K))
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 150 CONTINUE
- IF (ABE(K,ML1) .NE. 0.0E0) Z(K) = Z(K)/ABE(K,ML1)
- IF (ABE(K,ML1) .EQ. 0.0E0) Z(K) = 1.0E0
- LM = MIN(K,M) - 1
- LZ = K - LM
- T = -Z(K)
- CALL SAXPY(LM,T,ABE(K-1,ML+2),-LDB,Z(LZ),1)
- 160 CONTINUE
- C MAKE ZNORM = 1.0E0
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
- RETURN
- END
|