123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- *DECK SNBIR
- SUBROUTINE SNBIR (ABE, LDA, N, ML, MU, V, ITASK, IND, WORK, IWORK)
- C***BEGIN PROLOGUE SNBIR
- C***PURPOSE Solve a general nonsymmetric banded system of linear
- C equations. Iterative refinement is used to obtain an error
- C estimate.
- C***LIBRARY SLATEC
- C***CATEGORY D2A2
- C***TYPE SINGLE PRECISION (SNBIR-S, CNBIR-C)
- C***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC
- C***AUTHOR Voorhees, E. A., (LANL)
- C***DESCRIPTION
- C
- C Subroutine SNBIR solves a general nonsymmetric banded NxN
- C system of single precision real linear equations using
- C SLATEC subroutines SNBFA and SNBSL. These are adaptations
- C of the LINPACK subroutines SGBFA and SGBSL, which require
- C a different format for storing the matrix elements.
- C One pass of iterative refinement is used only to obtain an
- C estimate of the accuracy. If A is an NxN real banded
- C matrix and if X and B are real N-vectors, then SNBIR
- C solves the equation
- C
- C A*X=B.
- C
- C A band matrix is a matrix whose nonzero elements are all
- C fairly near the main diagonal, specifically A(I,J) = 0
- C if I-J is greater than ML or J-I is greater than
- C MU . The integers ML and MU are called the lower and upper
- C band widths and M = ML+MU+1 is the total band width.
- C SNBIR uses less time and storage than the corresponding
- C program for general matrices (SGEIR) if 2*ML+MU .LT. N .
- C
- C The matrix A is first factored into upper and lower tri-
- C angular matrices U and L using partial pivoting. These
- C factors and the pivoting information are used to find the
- C solution vector X . Then the residual vector is found and used
- C to calculate an estimate of the relative error, IND . IND esti-
- C mates the accuracy of the solution only when the input matrix
- C and the right hand side are represented exactly in the computer
- C and does not take into account any errors in the input data.
- C
- C If the equation A*X=B is to be solved for more than one vector
- C B, the factoring of A does not need to be performed again and
- C the option to only solve (ITASK .GT. 1) will be faster for
- C the succeeding solutions. In this case, the contents of A, LDA,
- C N, work and IWORK must not have been altered by the user follow-
- C ing factorization (ITASK=1). IND will not be changed by SNBIR
- C in this case.
- C
- C
- C Band Storage
- C
- C If A is a band matrix, the following program segment
- C will set up the input.
- C
- C ML = (band width below the diagonal)
- C MU = (band width above the diagonal)
- C DO 20 I = 1, N
- C J1 = MAX(1, I-ML)
- C J2 = MIN(N, I+MU)
- C DO 10 J = J1, J2
- C K = J - I + ML + 1
- C ABE(I,K) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C This uses columns 1 Through ML+MU+1 of ABE .
- C
- C Example: If the original matrix is
- C
- C 11 12 13 0 0 0
- C 21 22 23 24 0 0
- C 0 32 33 34 35 0
- C 0 0 43 44 45 46
- C 0 0 0 54 55 56
- C 0 0 0 0 65 66
- C
- C then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain
- C
- C * 11 12 13 , * = not used
- C 21 22 23 24
- C 32 33 34 35
- C 43 44 45 46
- C 54 55 56 *
- C 65 66 * *
- C
- C
- C Argument Description ***
- C
- C ABE REAL(LDA,MM)
- C on entry, contains the matrix in band storage as
- C described above. MM must not be less than M =
- C ML+MU+1 . The user is cautioned to dimension ABE
- C with care since MM is not an argument and cannot
- C be checked by SNBIR. The rows of the original
- C matrix are stored in the rows of ABE and the
- C diagonals of the original matrix are stored in
- C columns 1 through ML+MU+1 of ABE . ABE is
- C not altered by the program.
- C LDA INTEGER
- C the leading dimension of array ABE. LDA must be great-
- C er than or equal to N. (terminal error message IND=-1)
- C N INTEGER
- C the order of the matrix A. N must be greater
- C than or equal to 1 . (terminal error message IND=-2)
- C ML INTEGER
- C the number of diagonals below the main diagonal.
- C ML must not be less than zero nor greater than or
- C equal to N . (terminal error message IND=-5)
- C MU INTEGER
- C the number of diagonals above the main diagonal.
- C MU must not be less than zero nor greater than or
- C equal to N . (terminal error message IND=-6)
- C V REAL(N)
- C on entry, the singly subscripted array(vector) of di-
- C mension N which contains the right hand side B of a
- C system of simultaneous linear equations A*X=B.
- C on return, V contains the solution vector, X .
- C ITASK INTEGER
- C If ITASK=1, the matrix A is factored and then the
- C linear equation is solved.
- C If ITASK .GT. 1, the equation is solved using the existing
- C factored matrix A and IWORK.
- C If ITASK .LT. 1, then terminal error message IND=-3 is
- C printed.
- C IND INTEGER
- C GT. 0 IND is a rough estimate of the number of digits
- C of accuracy in the solution, X . IND=75 means
- C that the solution vector X is zero.
- C LT. 0 See error message corresponding to IND below.
- C WORK REAL(N*(NC+1))
- C a singly subscripted array of dimension at least
- C N*(NC+1) where NC = 2*ML+MU+1 .
- C IWORK INTEGER(N)
- C a singly subscripted array of dimension at least N.
- C
- C Error Messages Printed ***
- C
- C IND=-1 terminal N is greater than LDA.
- C IND=-2 terminal N is less than 1.
- C IND=-3 terminal ITASK is less than 1.
- C IND=-4 terminal the matrix A is computationally singular.
- C A solution has not been computed.
- C IND=-5 terminal ML is less than zero or is greater than
- C or equal to N .
- C IND=-6 terminal MU is less than zero or is greater than
- C or equal to N .
- C IND=-10 warning the solution has no apparent significance.
- C The solution may be inaccurate or the matrix
- C A may be poorly scaled.
- C
- C Note- The above terminal(*fatal*) error messages are
- C designed to be handled by XERMSG in which
- C LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
- C for warning error messages from XERMSG. Unless
- C the user provides otherwise, an error message
- C will be printed followed by an abort.
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED R1MACH, SASUM, SCOPY, SDSDOT, SNBFA, SNBSL, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800815 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE SNBIR
- C
- INTEGER LDA,N,ITASK,IND,IWORK(*),INFO,J,K,KK,L,M,ML,MU,NC
- REAL ABE(LDA,*),V(*),WORK(N,*),XNORM,DNORM,SDSDOT,SASUM,R1MACH
- CHARACTER*8 XERN1, XERN2
- C***FIRST EXECUTABLE STATEMENT SNBIR
- IF (LDA.LT.N) THEN
- IND = -1
- WRITE (XERN1, '(I8)') LDA
- WRITE (XERN2, '(I8)') N
- CALL XERMSG ('SLATEC', 'SNBIR', 'LDA = ' // XERN1 //
- * ' IS LESS THAN N = ' // XERN2, -1, 1)
- RETURN
- ENDIF
- C
- IF (N.LE.0) THEN
- IND = -2
- WRITE (XERN1, '(I8)') N
- CALL XERMSG ('SLATEC', 'SNBIR', 'N = ' // XERN1 //
- * ' IS LESS THAN 1', -2, 1)
- RETURN
- ENDIF
- C
- IF (ITASK.LT.1) THEN
- IND = -3
- WRITE (XERN1, '(I8)') ITASK
- CALL XERMSG ('SLATEC', 'SNBIR', 'ITASK = ' // XERN1 //
- * ' IS LESS THAN 1', -3, 1)
- RETURN
- ENDIF
- C
- IF (ML.LT.0 .OR. ML.GE.N) THEN
- IND = -5
- WRITE (XERN1, '(I8)') ML
- CALL XERMSG ('SLATEC', 'SNBIR',
- * 'ML = ' // XERN1 // ' IS OUT OF RANGE', -5, 1)
- RETURN
- ENDIF
- C
- IF (MU.LT.0 .OR. MU.GE.N) THEN
- IND = -6
- WRITE (XERN1, '(I8)') MU
- CALL XERMSG ('SLATEC', 'SNBIR',
- * 'MU = ' // XERN1 // ' IS OUT OF RANGE', -6, 1)
- RETURN
- ENDIF
- C
- NC = 2*ML+MU+1
- IF (ITASK.EQ.1) THEN
- C
- C MOVE MATRIX ABE TO WORK
- C
- M=ML+MU+1
- DO 10 J=1,M
- CALL SCOPY(N,ABE(1,J),1,WORK(1,J),1)
- 10 CONTINUE
- C
- C FACTOR MATRIX A INTO LU
- C
- CALL SNBFA(WORK,N,N,ML,MU,IWORK,INFO)
- C
- C CHECK FOR COMPUTATIONALLY SINGULAR MATRIX
- C
- IF (INFO.NE.0) THEN
- IND = -4
- CALL XERMSG ('SLATEC', 'SNBIR',
- * 'SINGULAR MATRIX A - NO SOLUTION', -4, 1)
- RETURN
- ENDIF
- ENDIF
- C
- C SOLVE WHEN FACTORING COMPLETE
- C MOVE VECTOR B TO WORK
- C
- CALL SCOPY(N,V(1),1,WORK(1,NC+1),1)
- CALL SNBSL(WORK,N,N,ML,MU,IWORK,V,0)
- C
- C FORM NORM OF X0
- C
- XNORM = SASUM(N,V(1),1)
- IF (XNORM.EQ.0.0) THEN
- IND = 75
- RETURN
- ENDIF
- C
- C COMPUTE RESIDUAL
- C
- DO 40 J=1,N
- K = MAX(1,ML+2-J)
- KK = MAX(1,J-ML)
- L = MIN(J-1,ML)+MIN(N-J,MU)+1
- WORK(J,NC+1) = SDSDOT(L,-WORK(J,NC+1),ABE(J,K),LDA,V(KK),1)
- 40 CONTINUE
- C
- C SOLVE A*DELTA=R
- C
- CALL SNBSL(WORK,N,N,ML,MU,IWORK,WORK(1,NC+1),0)
- C
- C FORM NORM OF DELTA
- C
- DNORM = SASUM(N,WORK(1,NC+1),1)
- C
- C COMPUTE IND (ESTIMATE OF NO. OF SIGNIFICANT DIGITS)
- C AND CHECK FOR IND GREATER THAN ZERO
- C
- IND = -LOG10(MAX(R1MACH(4),DNORM/XNORM))
- IF (IND.LE.0) THEN
- IND = -10
- CALL XERMSG ('SLATEC', 'SNBIR',
- * 'SOLUTION MAY HAVE NO SIGNIFICANCE', -10, 0)
- ENDIF
- RETURN
- END
|