123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- *DECK SPOFA
- SUBROUTINE SPOFA (A, LDA, N, INFO)
- C***BEGIN PROLOGUE SPOFA
- C***PURPOSE Factor a real symmetric positive definite matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2B1B
- C***TYPE SINGLE PRECISION (SPOFA-S, DPOFA-D, CPOFA-C)
- C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
- C POSITIVE DEFINITE
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C SPOFA factors a real symmetric positive definite matrix.
- C
- C SPOFA is usually called by SPOCO, but it can be called
- C directly with a saving in time if RCOND is not needed.
- C (Time for SPOCO) = (1 + 18/N)*(Time for SPOFA) .
- C
- C On Entry
- C
- C A REAL(LDA, N)
- C the symmetric matrix to be factored. Only the
- C diagonal and upper triangle are used.
- C
- C LDA INTEGER
- C the leading dimension of the array A .
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C On Return
- C
- C A an upper triangular matrix R so that A = TRANS(R)*R
- C where TRANS(R) is the transpose.
- C The strict lower triangle is unaltered.
- C If INFO .NE. 0 , the factorization is not complete.
- C
- C INFO INTEGER
- C = 0 for normal return.
- C = K signals an error condition. The leading minor
- C of order K is not positive definite.
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED SDOT
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE SPOFA
- INTEGER LDA,N,INFO
- REAL A(LDA,*)
- C
- REAL SDOT,T
- REAL S
- INTEGER J,JM1,K
- C***FIRST EXECUTABLE STATEMENT SPOFA
- DO 30 J = 1, N
- INFO = J
- S = 0.0E0
- JM1 = J - 1
- IF (JM1 .LT. 1) GO TO 20
- DO 10 K = 1, JM1
- T = A(K,J) - SDOT(K-1,A(1,K),1,A(1,J),1)
- T = T/A(K,K)
- A(K,J) = T
- S = S + T*T
- 10 CONTINUE
- 20 CONTINUE
- S = A(J,J) - S
- IF (S .LE. 0.0E0) GO TO 40
- A(J,J) = SQRT(S)
- 30 CONTINUE
- INFO = 0
- 40 CONTINUE
- RETURN
- END
|