sppco.f 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. *DECK SPPCO
  2. SUBROUTINE SPPCO (AP, N, RCOND, Z, INFO)
  3. C***BEGIN PROLOGUE SPPCO
  4. C***PURPOSE Factor a symmetric positive definite matrix stored in
  5. C packed form and estimate the condition number of the
  6. C matrix.
  7. C***LIBRARY SLATEC (LINPACK)
  8. C***CATEGORY D2B1B
  9. C***TYPE SINGLE PRECISION (SPPCO-S, DPPCO-D, CPPCO-C)
  10. C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
  11. C MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
  12. C***AUTHOR Moler, C. B., (U. of New Mexico)
  13. C***DESCRIPTION
  14. C
  15. C SPPCO factors a real symmetric positive definite matrix
  16. C stored in packed form
  17. C and estimates the condition of the matrix.
  18. C
  19. C If RCOND is not needed, SPPFA is slightly faster.
  20. C To solve A*X = B , follow SPPCO by SPPSL.
  21. C To compute INVERSE(A)*C , follow SPPCO by SPPSL.
  22. C To compute DETERMINANT(A) , follow SPPCO by SPPDI.
  23. C To compute INVERSE(A) , follow SPPCO by SPPDI.
  24. C
  25. C On Entry
  26. C
  27. C AP REAL (N*(N+1)/2)
  28. C the packed form of a symmetric matrix A . The
  29. C columns of the upper triangle are stored sequentially
  30. C in a one-dimensional array of length N*(N+1)/2 .
  31. C See comments below for details.
  32. C
  33. C N INTEGER
  34. C the order of the matrix A .
  35. C
  36. C On Return
  37. C
  38. C AP an upper triangular matrix R , stored in packed
  39. C form, so that A = TRANS(R)*R .
  40. C If INFO .NE. 0 , the factorization is not complete.
  41. C
  42. C RCOND REAL
  43. C an estimate of the reciprocal condition of A .
  44. C For the system A*X = B , relative perturbations
  45. C in A and B of size EPSILON may cause
  46. C relative perturbations in X of size EPSILON/RCOND .
  47. C If RCOND is so small that the logical expression
  48. C 1.0 + RCOND .EQ. 1.0
  49. C is true, then A may be singular to working
  50. C precision. In particular, RCOND is zero if
  51. C exact singularity is detected or the estimate
  52. C underflows. If INFO .NE. 0 , RCOND is unchanged.
  53. C
  54. C Z REAL(N)
  55. C a work vector whose contents are usually unimportant.
  56. C If A is singular to working precision, then Z is
  57. C an approximate null vector in the sense that
  58. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  59. C If INFO .NE. 0 , Z is unchanged.
  60. C
  61. C INFO INTEGER
  62. C = 0 for normal return.
  63. C = K signals an error condition. The leading minor
  64. C of order K is not positive definite.
  65. C
  66. C Packed Storage
  67. C
  68. C The following program segment will pack the upper
  69. C triangle of a symmetric matrix.
  70. C
  71. C K = 0
  72. C DO 20 J = 1, N
  73. C DO 10 I = 1, J
  74. C K = K + 1
  75. C AP(K) = A(I,J)
  76. C 10 CONTINUE
  77. C 20 CONTINUE
  78. C
  79. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  80. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  81. C***ROUTINES CALLED SASUM, SAXPY, SDOT, SPPFA, SSCAL
  82. C***REVISION HISTORY (YYMMDD)
  83. C 780814 DATE WRITTEN
  84. C 890531 Changed all specific intrinsics to generic. (WRB)
  85. C 890831 Modified array declarations. (WRB)
  86. C 890831 REVISION DATE from Version 3.2
  87. C 891214 Prologue converted to Version 4.0 format. (BAB)
  88. C 900326 Removed duplicate information from DESCRIPTION section.
  89. C (WRB)
  90. C 920501 Reformatted the REFERENCES section. (WRB)
  91. C***END PROLOGUE SPPCO
  92. INTEGER N,INFO
  93. REAL AP(*),Z(*)
  94. REAL RCOND
  95. C
  96. REAL SDOT,EK,T,WK,WKM
  97. REAL ANORM,S,SASUM,SM,YNORM
  98. INTEGER I,IJ,J,JM1,J1,K,KB,KJ,KK,KP1
  99. C
  100. C FIND NORM OF A
  101. C
  102. C***FIRST EXECUTABLE STATEMENT SPPCO
  103. J1 = 1
  104. DO 30 J = 1, N
  105. Z(J) = SASUM(J,AP(J1),1)
  106. IJ = J1
  107. J1 = J1 + J
  108. JM1 = J - 1
  109. IF (JM1 .LT. 1) GO TO 20
  110. DO 10 I = 1, JM1
  111. Z(I) = Z(I) + ABS(AP(IJ))
  112. IJ = IJ + 1
  113. 10 CONTINUE
  114. 20 CONTINUE
  115. 30 CONTINUE
  116. ANORM = 0.0E0
  117. DO 40 J = 1, N
  118. ANORM = MAX(ANORM,Z(J))
  119. 40 CONTINUE
  120. C
  121. C FACTOR
  122. C
  123. CALL SPPFA(AP,N,INFO)
  124. IF (INFO .NE. 0) GO TO 180
  125. C
  126. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  127. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
  128. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  129. C GROWTH IN THE ELEMENTS OF W WHERE TRANS(R)*W = E .
  130. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  131. C
  132. C SOLVE TRANS(R)*W = E
  133. C
  134. EK = 1.0E0
  135. DO 50 J = 1, N
  136. Z(J) = 0.0E0
  137. 50 CONTINUE
  138. KK = 0
  139. DO 110 K = 1, N
  140. KK = KK + K
  141. IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,-Z(K))
  142. IF (ABS(EK-Z(K)) .LE. AP(KK)) GO TO 60
  143. S = AP(KK)/ABS(EK-Z(K))
  144. CALL SSCAL(N,S,Z,1)
  145. EK = S*EK
  146. 60 CONTINUE
  147. WK = EK - Z(K)
  148. WKM = -EK - Z(K)
  149. S = ABS(WK)
  150. SM = ABS(WKM)
  151. WK = WK/AP(KK)
  152. WKM = WKM/AP(KK)
  153. KP1 = K + 1
  154. KJ = KK + K
  155. IF (KP1 .GT. N) GO TO 100
  156. DO 70 J = KP1, N
  157. SM = SM + ABS(Z(J)+WKM*AP(KJ))
  158. Z(J) = Z(J) + WK*AP(KJ)
  159. S = S + ABS(Z(J))
  160. KJ = KJ + J
  161. 70 CONTINUE
  162. IF (S .GE. SM) GO TO 90
  163. T = WKM - WK
  164. WK = WKM
  165. KJ = KK + K
  166. DO 80 J = KP1, N
  167. Z(J) = Z(J) + T*AP(KJ)
  168. KJ = KJ + J
  169. 80 CONTINUE
  170. 90 CONTINUE
  171. 100 CONTINUE
  172. Z(K) = WK
  173. 110 CONTINUE
  174. S = 1.0E0/SASUM(N,Z,1)
  175. CALL SSCAL(N,S,Z,1)
  176. C
  177. C SOLVE R*Y = W
  178. C
  179. DO 130 KB = 1, N
  180. K = N + 1 - KB
  181. IF (ABS(Z(K)) .LE. AP(KK)) GO TO 120
  182. S = AP(KK)/ABS(Z(K))
  183. CALL SSCAL(N,S,Z,1)
  184. 120 CONTINUE
  185. Z(K) = Z(K)/AP(KK)
  186. KK = KK - K
  187. T = -Z(K)
  188. CALL SAXPY(K-1,T,AP(KK+1),1,Z(1),1)
  189. 130 CONTINUE
  190. S = 1.0E0/SASUM(N,Z,1)
  191. CALL SSCAL(N,S,Z,1)
  192. C
  193. YNORM = 1.0E0
  194. C
  195. C SOLVE TRANS(R)*V = Y
  196. C
  197. DO 150 K = 1, N
  198. Z(K) = Z(K) - SDOT(K-1,AP(KK+1),1,Z(1),1)
  199. KK = KK + K
  200. IF (ABS(Z(K)) .LE. AP(KK)) GO TO 140
  201. S = AP(KK)/ABS(Z(K))
  202. CALL SSCAL(N,S,Z,1)
  203. YNORM = S*YNORM
  204. 140 CONTINUE
  205. Z(K) = Z(K)/AP(KK)
  206. 150 CONTINUE
  207. S = 1.0E0/SASUM(N,Z,1)
  208. CALL SSCAL(N,S,Z,1)
  209. YNORM = S*YNORM
  210. C
  211. C SOLVE R*Z = V
  212. C
  213. DO 170 KB = 1, N
  214. K = N + 1 - KB
  215. IF (ABS(Z(K)) .LE. AP(KK)) GO TO 160
  216. S = AP(KK)/ABS(Z(K))
  217. CALL SSCAL(N,S,Z,1)
  218. YNORM = S*YNORM
  219. 160 CONTINUE
  220. Z(K) = Z(K)/AP(KK)
  221. KK = KK - K
  222. T = -Z(K)
  223. CALL SAXPY(K-1,T,AP(KK+1),1,Z(1),1)
  224. 170 CONTINUE
  225. C MAKE ZNORM = 1.0
  226. S = 1.0E0/SASUM(N,Z,1)
  227. CALL SSCAL(N,S,Z,1)
  228. YNORM = S*YNORM
  229. C
  230. IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
  231. IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
  232. 180 CONTINUE
  233. RETURN
  234. END