123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- *DECK SPSORT
- SUBROUTINE SPSORT (X, N, IPERM, KFLAG, IER)
- C***BEGIN PROLOGUE SPSORT
- C***PURPOSE Return the permutation vector generated by sorting a given
- C array and, optionally, rearrange the elements of the array.
- C The array may be sorted in increasing or decreasing order.
- C A slightly modified quicksort algorithm is used.
- C***LIBRARY SLATEC
- C***CATEGORY N6A1B, N6A2B
- C***TYPE SINGLE PRECISION (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
- C***KEYWORDS NUMBER SORTING, PASSIVE SORTING, SINGLETON QUICKSORT, SORT
- C***AUTHOR Jones, R. E., (SNLA)
- C Rhoads, G. S., (NBS)
- C Wisniewski, J. A., (SNLA)
- C***DESCRIPTION
- C
- C SPSORT returns the permutation vector IPERM generated by sorting
- C the array X and, optionally, rearranges the values in X. X may
- C be sorted in increasing or decreasing order. A slightly modified
- C quicksort algorithm is used.
- C
- C IPERM is such that X(IPERM(I)) is the Ith value in the rearrangement
- C of X. IPERM may be applied to another array by calling IPPERM,
- C SPPERM, DPPERM or HPPERM.
- C
- C The main difference between SPSORT and its active sorting equivalent
- C SSORT is that the data are referenced indirectly rather than
- C directly. Therefore, SPSORT should require approximately twice as
- C long to execute as SSORT. However, SPSORT is more general.
- C
- C Description of Parameters
- C X - input/output -- real array of values to be sorted.
- C If ABS(KFLAG) = 2, then the values in X will be
- C rearranged on output; otherwise, they are unchanged.
- C N - input -- number of values in array X to be sorted.
- C IPERM - output -- permutation array such that IPERM(I) is the
- C index of the value in the original order of the
- C X array that is in the Ith location in the sorted
- C order.
- C KFLAG - input -- control parameter:
- C = 2 means return the permutation vector resulting from
- C sorting X in increasing order and sort X also.
- C = 1 means return the permutation vector resulting from
- C sorting X in increasing order and do not sort X.
- C = -1 means return the permutation vector resulting from
- C sorting X in decreasing order and do not sort X.
- C = -2 means return the permutation vector resulting from
- C sorting X in decreasing order and sort X also.
- C IER - output -- error indicator:
- C = 0 if no error,
- C = 1 if N is zero or negative,
- C = 2 if KFLAG is not 2, 1, -1, or -2.
- C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
- C for sorting with minimal storage, Communications of
- C the ACM, 12, 3 (1969), pp. 185-187.
- C***ROUTINES CALLED XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 761101 DATE WRITTEN
- C 761118 Modified by John A. Wisniewski to use the Singleton
- C quicksort algorithm.
- C 870423 Modified by Gregory S. Rhoads for passive sorting with the
- C option for the rearrangement of the original data.
- C 890620 Algorithm for rearranging the data vector corrected by R.
- C Boisvert.
- C 890622 Prologue upgraded to Version 4.0 style by D. Lozier.
- C 891128 Error when KFLAG.LT.0 and N=1 corrected by R. Boisvert.
- C 920507 Modified by M. McClain to revise prologue text.
- C 920818 Declarations section rebuilt and code restructured to use
- C IF-THEN-ELSE-ENDIF. (SMR, WRB)
- C***END PROLOGUE SPSORT
- C .. Scalar Arguments ..
- INTEGER IER, KFLAG, N
- C .. Array Arguments ..
- REAL X(*)
- INTEGER IPERM(*)
- C .. Local Scalars ..
- REAL R, TEMP
- INTEGER I, IJ, INDX, INDX0, ISTRT, J, K, KK, L, LM, LMT, M, NN
- C .. Local Arrays ..
- INTEGER IL(21), IU(21)
- C .. External Subroutines ..
- EXTERNAL XERMSG
- C .. Intrinsic Functions ..
- INTRINSIC ABS, INT
- C***FIRST EXECUTABLE STATEMENT SPSORT
- IER = 0
- NN = N
- IF (NN .LT. 1) THEN
- IER = 1
- CALL XERMSG ('SLATEC', 'SPSORT',
- + 'The number of values to be sorted, N, is not positive.',
- + IER, 1)
- RETURN
- ENDIF
- KK = ABS(KFLAG)
- IF (KK.NE.1 .AND. KK.NE.2) THEN
- IER = 2
- CALL XERMSG ('SLATEC', 'SPSORT',
- + 'The sort control parameter, KFLAG, is not 2, 1, -1, or -2.',
- + IER, 1)
- RETURN
- ENDIF
- C
- C Initialize permutation vector
- C
- DO 10 I=1,NN
- IPERM(I) = I
- 10 CONTINUE
- C
- C Return if only one value is to be sorted
- C
- IF (NN .EQ. 1) RETURN
- C
- C Alter array X to get decreasing order if needed
- C
- IF (KFLAG .LE. -1) THEN
- DO 20 I=1,NN
- X(I) = -X(I)
- 20 CONTINUE
- ENDIF
- C
- C Sort X only
- C
- M = 1
- I = 1
- J = NN
- R = .375E0
- C
- 30 IF (I .EQ. J) GO TO 80
- IF (R .LE. 0.5898437E0) THEN
- R = R+3.90625E-2
- ELSE
- R = R-0.21875E0
- ENDIF
- C
- 40 K = I
- C
- C Select a central element of the array and save it in location L
- C
- IJ = I + INT((J-I)*R)
- LM = IPERM(IJ)
- C
- C If first element of array is greater than LM, interchange with LM
- C
- IF (X(IPERM(I)) .GT. X(LM)) THEN
- IPERM(IJ) = IPERM(I)
- IPERM(I) = LM
- LM = IPERM(IJ)
- ENDIF
- L = J
- C
- C If last element of array is less than LM, interchange with LM
- C
- IF (X(IPERM(J)) .LT. X(LM)) THEN
- IPERM(IJ) = IPERM(J)
- IPERM(J) = LM
- LM = IPERM(IJ)
- C
- C If first element of array is greater than LM, interchange
- C with LM
- C
- IF (X(IPERM(I)) .GT. X(LM)) THEN
- IPERM(IJ) = IPERM(I)
- IPERM(I) = LM
- LM = IPERM(IJ)
- ENDIF
- ENDIF
- GO TO 60
- 50 LMT = IPERM(L)
- IPERM(L) = IPERM(K)
- IPERM(K) = LMT
- C
- C Find an element in the second half of the array which is smaller
- C than LM
- C
- 60 L = L-1
- IF (X(IPERM(L)) .GT. X(LM)) GO TO 60
- C
- C Find an element in the first half of the array which is greater
- C than LM
- C
- 70 K = K+1
- IF (X(IPERM(K)) .LT. X(LM)) GO TO 70
- C
- C Interchange these elements
- C
- IF (K .LE. L) GO TO 50
- C
- C Save upper and lower subscripts of the array yet to be sorted
- C
- IF (L-I .GT. J-K) THEN
- IL(M) = I
- IU(M) = L
- I = K
- M = M+1
- ELSE
- IL(M) = K
- IU(M) = J
- J = L
- M = M+1
- ENDIF
- GO TO 90
- C
- C Begin again on another portion of the unsorted array
- C
- 80 M = M-1
- IF (M .EQ. 0) GO TO 120
- I = IL(M)
- J = IU(M)
- C
- 90 IF (J-I .GE. 1) GO TO 40
- IF (I .EQ. 1) GO TO 30
- I = I-1
- C
- 100 I = I+1
- IF (I .EQ. J) GO TO 80
- LM = IPERM(I+1)
- IF (X(IPERM(I)) .LE. X(LM)) GO TO 100
- K = I
- C
- 110 IPERM(K+1) = IPERM(K)
- K = K-1
- C
- IF (X(LM) .LT. X(IPERM(K))) GO TO 110
- IPERM(K+1) = LM
- GO TO 100
- C
- C Clean up
- C
- 120 IF (KFLAG .LE. -1) THEN
- DO 130 I=1,NN
- X(I) = -X(I)
- 130 CONTINUE
- ENDIF
- C
- C Rearrange the values of X if desired
- C
- IF (KK .EQ. 2) THEN
- C
- C Use the IPERM vector as a flag.
- C If IPERM(I) < 0, then the I-th value is in correct location
- C
- DO 150 ISTRT=1,NN
- IF (IPERM(ISTRT) .GE. 0) THEN
- INDX = ISTRT
- INDX0 = INDX
- TEMP = X(ISTRT)
- 140 IF (IPERM(INDX) .GT. 0) THEN
- X(INDX) = X(IPERM(INDX))
- INDX0 = INDX
- IPERM(INDX) = -IPERM(INDX)
- INDX = ABS(IPERM(INDX))
- GO TO 140
- ENDIF
- X(INDX0) = TEMP
- ENDIF
- 150 CONTINUE
- C
- C Revert the signs of the IPERM values
- C
- DO 160 I=1,NN
- IPERM(I) = -IPERM(I)
- 160 CONTINUE
- C
- ENDIF
- C
- RETURN
- END
|