ssico.f 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. *DECK SSICO
  2. SUBROUTINE SSICO (A, LDA, N, KPVT, RCOND, Z)
  3. C***BEGIN PROLOGUE SSICO
  4. C***PURPOSE Factor a symmetric matrix by elimination with symmetric
  5. C pivoting and estimate the condition number of the matrix.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2B1A
  8. C***TYPE SINGLE PRECISION (SSICO-S, DSICO-D, CHICO-C, CSICO-C)
  9. C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
  10. C MATRIX FACTORIZATION, SYMMETRIC
  11. C***AUTHOR Moler, C. B., (U. of New Mexico)
  12. C***DESCRIPTION
  13. C
  14. C SSICO factors a real symmetric matrix by elimination with
  15. C symmetric pivoting and estimates the condition of the matrix.
  16. C
  17. C If RCOND is not needed, SSIFA is slightly faster.
  18. C To solve A*X = B , follow SSICO by SSISL.
  19. C To compute INVERSE(A)*C , follow SSICO by SSISL.
  20. C To compute INVERSE(A) , follow SSICO by SSIDI.
  21. C To compute DETERMINANT(A) , follow SSICO by SSIDI.
  22. C To compute INERTIA(A), follow SSICO by SSIDI.
  23. C
  24. C On Entry
  25. C
  26. C A REAL(LDA, N)
  27. C the symmetric matrix to be factored.
  28. C Only the diagonal and upper triangle are used.
  29. C
  30. C LDA INTEGER
  31. C the leading dimension of the array A .
  32. C
  33. C N INTEGER
  34. C the order of the matrix A .
  35. C
  36. C Output
  37. C
  38. C A a block diagonal matrix and the multipliers which
  39. C were used to obtain it.
  40. C The factorization can be written A = U*D*TRANS(U)
  41. C where U is a product of permutation and unit
  42. C upper triangular matrices , TRANS(U) is the
  43. C transpose of U , and D is block diagonal
  44. C with 1 by 1 and 2 by 2 blocks.
  45. C
  46. C KPVT INTEGER(N)
  47. C an integer vector of pivot indices.
  48. C
  49. C RCOND REAL
  50. C an estimate of the reciprocal condition of A .
  51. C For the system A*X = B , relative perturbations
  52. C in A and B of size EPSILON may cause
  53. C relative perturbations in X of size EPSILON/RCOND .
  54. C If RCOND is so small that the logical expression
  55. C 1.0 + RCOND .EQ. 1.0
  56. C is true, then A may be singular to working
  57. C precision. In particular, RCOND is zero if
  58. C exact singularity is detected or the estimate
  59. C underflows.
  60. C
  61. C Z REAL(N)
  62. C a work vector whose contents are usually unimportant.
  63. C If A is close to a singular matrix, then Z is
  64. C an approximate null vector in the sense that
  65. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  66. C
  67. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  68. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  69. C***ROUTINES CALLED SASUM, SAXPY, SDOT, SSCAL, SSIFA
  70. C***REVISION HISTORY (YYMMDD)
  71. C 780814 DATE WRITTEN
  72. C 890531 Changed all specific intrinsics to generic. (WRB)
  73. C 890831 Modified array declarations. (WRB)
  74. C 891107 Modified routine equivalence list. (WRB)
  75. C 891107 REVISION DATE from Version 3.2
  76. C 891214 Prologue converted to Version 4.0 format. (BAB)
  77. C 900326 Removed duplicate information from DESCRIPTION section.
  78. C (WRB)
  79. C 920501 Reformatted the REFERENCES section. (WRB)
  80. C***END PROLOGUE SSICO
  81. INTEGER LDA,N,KPVT(*)
  82. REAL A(LDA,*),Z(*)
  83. REAL RCOND
  84. C
  85. REAL AK,AKM1,BK,BKM1,SDOT,DENOM,EK,T
  86. REAL ANORM,S,SASUM,YNORM
  87. INTEGER I,INFO,J,JM1,K,KP,KPS,KS
  88. C
  89. C FIND NORM OF A USING ONLY UPPER HALF
  90. C
  91. C***FIRST EXECUTABLE STATEMENT SSICO
  92. DO 30 J = 1, N
  93. Z(J) = SASUM(J,A(1,J),1)
  94. JM1 = J - 1
  95. IF (JM1 .LT. 1) GO TO 20
  96. DO 10 I = 1, JM1
  97. Z(I) = Z(I) + ABS(A(I,J))
  98. 10 CONTINUE
  99. 20 CONTINUE
  100. 30 CONTINUE
  101. ANORM = 0.0E0
  102. DO 40 J = 1, N
  103. ANORM = MAX(ANORM,Z(J))
  104. 40 CONTINUE
  105. C
  106. C FACTOR
  107. C
  108. CALL SSIFA(A,LDA,N,KPVT,INFO)
  109. C
  110. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  111. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
  112. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  113. C GROWTH IN THE ELEMENTS OF W WHERE U*D*W = E .
  114. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  115. C
  116. C SOLVE U*D*W = E
  117. C
  118. EK = 1.0E0
  119. DO 50 J = 1, N
  120. Z(J) = 0.0E0
  121. 50 CONTINUE
  122. K = N
  123. 60 IF (K .EQ. 0) GO TO 120
  124. KS = 1
  125. IF (KPVT(K) .LT. 0) KS = 2
  126. KP = ABS(KPVT(K))
  127. KPS = K + 1 - KS
  128. IF (KP .EQ. KPS) GO TO 70
  129. T = Z(KPS)
  130. Z(KPS) = Z(KP)
  131. Z(KP) = T
  132. 70 CONTINUE
  133. IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,Z(K))
  134. Z(K) = Z(K) + EK
  135. CALL SAXPY(K-KS,Z(K),A(1,K),1,Z(1),1)
  136. IF (KS .EQ. 1) GO TO 80
  137. IF (Z(K-1) .NE. 0.0E0) EK = SIGN(EK,Z(K-1))
  138. Z(K-1) = Z(K-1) + EK
  139. CALL SAXPY(K-KS,Z(K-1),A(1,K-1),1,Z(1),1)
  140. 80 CONTINUE
  141. IF (KS .EQ. 2) GO TO 100
  142. IF (ABS(Z(K)) .LE. ABS(A(K,K))) GO TO 90
  143. S = ABS(A(K,K))/ABS(Z(K))
  144. CALL SSCAL(N,S,Z,1)
  145. EK = S*EK
  146. 90 CONTINUE
  147. IF (A(K,K) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
  148. IF (A(K,K) .EQ. 0.0E0) Z(K) = 1.0E0
  149. GO TO 110
  150. 100 CONTINUE
  151. AK = A(K,K)/A(K-1,K)
  152. AKM1 = A(K-1,K-1)/A(K-1,K)
  153. BK = Z(K)/A(K-1,K)
  154. BKM1 = Z(K-1)/A(K-1,K)
  155. DENOM = AK*AKM1 - 1.0E0
  156. Z(K) = (AKM1*BK - BKM1)/DENOM
  157. Z(K-1) = (AK*BKM1 - BK)/DENOM
  158. 110 CONTINUE
  159. K = K - KS
  160. GO TO 60
  161. 120 CONTINUE
  162. S = 1.0E0/SASUM(N,Z,1)
  163. CALL SSCAL(N,S,Z,1)
  164. C
  165. C SOLVE TRANS(U)*Y = W
  166. C
  167. K = 1
  168. 130 IF (K .GT. N) GO TO 160
  169. KS = 1
  170. IF (KPVT(K) .LT. 0) KS = 2
  171. IF (K .EQ. 1) GO TO 150
  172. Z(K) = Z(K) + SDOT(K-1,A(1,K),1,Z(1),1)
  173. IF (KS .EQ. 2)
  174. 1 Z(K+1) = Z(K+1) + SDOT(K-1,A(1,K+1),1,Z(1),1)
  175. KP = ABS(KPVT(K))
  176. IF (KP .EQ. K) GO TO 140
  177. T = Z(K)
  178. Z(K) = Z(KP)
  179. Z(KP) = T
  180. 140 CONTINUE
  181. 150 CONTINUE
  182. K = K + KS
  183. GO TO 130
  184. 160 CONTINUE
  185. S = 1.0E0/SASUM(N,Z,1)
  186. CALL SSCAL(N,S,Z,1)
  187. C
  188. YNORM = 1.0E0
  189. C
  190. C SOLVE U*D*V = Y
  191. C
  192. K = N
  193. 170 IF (K .EQ. 0) GO TO 230
  194. KS = 1
  195. IF (KPVT(K) .LT. 0) KS = 2
  196. IF (K .EQ. KS) GO TO 190
  197. KP = ABS(KPVT(K))
  198. KPS = K + 1 - KS
  199. IF (KP .EQ. KPS) GO TO 180
  200. T = Z(KPS)
  201. Z(KPS) = Z(KP)
  202. Z(KP) = T
  203. 180 CONTINUE
  204. CALL SAXPY(K-KS,Z(K),A(1,K),1,Z(1),1)
  205. IF (KS .EQ. 2) CALL SAXPY(K-KS,Z(K-1),A(1,K-1),1,Z(1),1)
  206. 190 CONTINUE
  207. IF (KS .EQ. 2) GO TO 210
  208. IF (ABS(Z(K)) .LE. ABS(A(K,K))) GO TO 200
  209. S = ABS(A(K,K))/ABS(Z(K))
  210. CALL SSCAL(N,S,Z,1)
  211. YNORM = S*YNORM
  212. 200 CONTINUE
  213. IF (A(K,K) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
  214. IF (A(K,K) .EQ. 0.0E0) Z(K) = 1.0E0
  215. GO TO 220
  216. 210 CONTINUE
  217. AK = A(K,K)/A(K-1,K)
  218. AKM1 = A(K-1,K-1)/A(K-1,K)
  219. BK = Z(K)/A(K-1,K)
  220. BKM1 = Z(K-1)/A(K-1,K)
  221. DENOM = AK*AKM1 - 1.0E0
  222. Z(K) = (AKM1*BK - BKM1)/DENOM
  223. Z(K-1) = (AK*BKM1 - BK)/DENOM
  224. 220 CONTINUE
  225. K = K - KS
  226. GO TO 170
  227. 230 CONTINUE
  228. S = 1.0E0/SASUM(N,Z,1)
  229. CALL SSCAL(N,S,Z,1)
  230. YNORM = S*YNORM
  231. C
  232. C SOLVE TRANS(U)*Z = V
  233. C
  234. K = 1
  235. 240 IF (K .GT. N) GO TO 270
  236. KS = 1
  237. IF (KPVT(K) .LT. 0) KS = 2
  238. IF (K .EQ. 1) GO TO 260
  239. Z(K) = Z(K) + SDOT(K-1,A(1,K),1,Z(1),1)
  240. IF (KS .EQ. 2)
  241. 1 Z(K+1) = Z(K+1) + SDOT(K-1,A(1,K+1),1,Z(1),1)
  242. KP = ABS(KPVT(K))
  243. IF (KP .EQ. K) GO TO 250
  244. T = Z(K)
  245. Z(K) = Z(KP)
  246. Z(KP) = T
  247. 250 CONTINUE
  248. 260 CONTINUE
  249. K = K + KS
  250. GO TO 240
  251. 270 CONTINUE
  252. C MAKE ZNORM = 1.0
  253. S = 1.0E0/SASUM(N,Z,1)
  254. CALL SSCAL(N,S,Z,1)
  255. YNORM = S*YNORM
  256. C
  257. IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
  258. IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
  259. RETURN
  260. END