123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- *DECK SSYMM
- SUBROUTINE SSYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA,
- $ C, LDC)
- C***BEGIN PROLOGUE SSYMM
- C***PURPOSE Multiply a real general matrix by a real symmetric matrix.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B6
- C***TYPE SINGLE PRECISION (SSYMM-S, DSYMM-D, CSYMM-C)
- C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J., (ANL)
- C Duff, I., (AERE)
- C Du Croz, J., (NAG)
- C Hammarling, S. (NAG)
- C***DESCRIPTION
- C
- C SSYMM performs one of the matrix-matrix operations
- C
- C C := alpha*A*B + beta*C,
- C
- C or
- C
- C C := alpha*B*A + beta*C,
- C
- C where alpha and beta are scalars, A is a symmetric matrix and B and
- C C are m by n matrices.
- C
- C Parameters
- C ==========
- C
- C SIDE - CHARACTER*1.
- C On entry, SIDE specifies whether the symmetric matrix A
- C appears on the left or right in the operation as follows:
- C
- C SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
- C
- C SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
- C
- C Unchanged on exit.
- C
- C UPLO - CHARACTER*1.
- C On entry, UPLO specifies whether the upper or lower
- C triangular part of the symmetric matrix A is to be
- C referenced as follows:
- C
- C UPLO = 'U' or 'u' Only the upper triangular part of the
- C symmetric matrix is to be referenced.
- C
- C UPLO = 'L' or 'l' Only the lower triangular part of the
- C symmetric matrix is to be referenced.
- C
- C Unchanged on exit.
- C
- C M - INTEGER.
- C On entry, M specifies the number of rows of the matrix C.
- C M must be at least zero.
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the number of columns of the matrix C.
- C N must be at least zero.
- C Unchanged on exit.
- C
- C ALPHA - REAL .
- C On entry, ALPHA specifies the scalar alpha.
- C Unchanged on exit.
- C
- C A - REAL array of DIMENSION ( LDA, ka ), where ka is
- C m when SIDE = 'L' or 'l' and is n otherwise.
- C Before entry with SIDE = 'L' or 'l', the m by m part of
- C the array A must contain the symmetric matrix, such that
- C when UPLO = 'U' or 'u', the leading m by m upper triangular
- C part of the array A must contain the upper triangular part
- C of the symmetric matrix and the strictly lower triangular
- C part of A is not referenced, and when UPLO = 'L' or 'l',
- C the leading m by m lower triangular part of the array A
- C must contain the lower triangular part of the symmetric
- C matrix and the strictly upper triangular part of A is not
- C referenced.
- C Before entry with SIDE = 'R' or 'r', the n by n part of
- C the array A must contain the symmetric matrix, such that
- C when UPLO = 'U' or 'u', the leading n by n upper triangular
- C part of the array A must contain the upper triangular part
- C of the symmetric matrix and the strictly lower triangular
- C part of A is not referenced, and when UPLO = 'L' or 'l',
- C the leading n by n lower triangular part of the array A
- C must contain the lower triangular part of the symmetric
- C matrix and the strictly upper triangular part of A is not
- C referenced.
- C Unchanged on exit.
- C
- C LDA - INTEGER.
- C On entry, LDA specifies the first dimension of A as declared
- C in the calling (sub) program. When SIDE = 'L' or 'l' then
- C LDA must be at least max( 1, m ), otherwise LDA must be at
- C least max( 1, n ).
- C Unchanged on exit.
- C
- C B - REAL array of DIMENSION ( LDB, n ).
- C Before entry, the leading m by n part of the array B must
- C contain the matrix B.
- C Unchanged on exit.
- C
- C LDB - INTEGER.
- C On entry, LDB specifies the first dimension of B as declared
- C in the calling (sub) program. LDB must be at least
- C max( 1, m ).
- C Unchanged on exit.
- C
- C BETA - REAL .
- C On entry, BETA specifies the scalar beta. When BETA is
- C supplied as zero then C need not be set on input.
- C Unchanged on exit.
- C
- C C - REAL array of DIMENSION ( LDC, n ).
- C Before entry, the leading m by n part of the array C must
- C contain the matrix C, except when beta is zero, in which
- C case C need not be set on entry.
- C On exit, the array C is overwritten by the m by n updated
- C matrix.
- C
- C LDC - INTEGER.
- C On entry, LDC specifies the first dimension of C as declared
- C in the calling (sub) program. LDC must be at least
- C max( 1, m ).
- C Unchanged on exit.
- C
- C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
- C A set of level 3 basic linear algebra subprograms.
- C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 890208 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE SSYMM
- C .. Scalar Arguments ..
- CHARACTER*1 SIDE, UPLO
- INTEGER M, N, LDA, LDB, LDC
- REAL ALPHA, BETA
- C .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), C( LDC, * )
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C .. Intrinsic Functions ..
- INTRINSIC MAX
- C .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, INFO, J, K, NROWA
- REAL TEMP1, TEMP2
- C .. Parameters ..
- REAL ONE , ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- C***FIRST EXECUTABLE STATEMENT SSYMM
- C
- C Set NROWA as the number of rows of A.
- C
- IF( LSAME( SIDE, 'L' ) )THEN
- NROWA = M
- ELSE
- NROWA = N
- END IF
- UPPER = LSAME( UPLO, 'U' )
- C
- C Test the input parameters.
- C
- INFO = 0
- IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
- $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
- INFO = 1
- ELSE IF( ( .NOT.UPPER ).AND.
- $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
- INFO = 2
- ELSE IF( M .LT.0 )THEN
- INFO = 3
- ELSE IF( N .LT.0 )THEN
- INFO = 4
- ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
- INFO = 7
- ELSE IF( LDB.LT.MAX( 1, M ) )THEN
- INFO = 9
- ELSE IF( LDC.LT.MAX( 1, M ) )THEN
- INFO = 12
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'SSYMM ', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
- $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- C
- C And when alpha.eq.zero.
- C
- IF( ALPHA.EQ.ZERO )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 20, J = 1, N
- DO 10, I = 1, M
- C( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- DO 30, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- RETURN
- END IF
- C
- C Start the operations.
- C
- IF( LSAME( SIDE, 'L' ) )THEN
- C
- C Form C := alpha*A*B + beta*C.
- C
- IF( UPPER )THEN
- DO 70, J = 1, N
- DO 60, I = 1, M
- TEMP1 = ALPHA*B( I, J )
- TEMP2 = ZERO
- DO 50, K = 1, I - 1
- C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
- TEMP2 = TEMP2 + B( K, J )*A( K, I )
- 50 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
- ELSE
- C( I, J ) = BETA *C( I, J ) +
- $ TEMP1*A( I, I ) + ALPHA*TEMP2
- END IF
- 60 CONTINUE
- 70 CONTINUE
- ELSE
- DO 100, J = 1, N
- DO 90, I = M, 1, -1
- TEMP1 = ALPHA*B( I, J )
- TEMP2 = ZERO
- DO 80, K = I + 1, M
- C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
- TEMP2 = TEMP2 + B( K, J )*A( K, I )
- 80 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
- ELSE
- C( I, J ) = BETA *C( I, J ) +
- $ TEMP1*A( I, I ) + ALPHA*TEMP2
- END IF
- 90 CONTINUE
- 100 CONTINUE
- END IF
- ELSE
- C
- C Form C := alpha*B*A + beta*C.
- C
- DO 170, J = 1, N
- TEMP1 = ALPHA*A( J, J )
- IF( BETA.EQ.ZERO )THEN
- DO 110, I = 1, M
- C( I, J ) = TEMP1*B( I, J )
- 110 CONTINUE
- ELSE
- DO 120, I = 1, M
- C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
- 120 CONTINUE
- END IF
- DO 140, K = 1, J - 1
- IF( UPPER )THEN
- TEMP1 = ALPHA*A( K, J )
- ELSE
- TEMP1 = ALPHA*A( J, K )
- END IF
- DO 130, I = 1, M
- C( I, J ) = C( I, J ) + TEMP1*B( I, K )
- 130 CONTINUE
- 140 CONTINUE
- DO 160, K = J + 1, N
- IF( UPPER )THEN
- TEMP1 = ALPHA*A( J, K )
- ELSE
- TEMP1 = ALPHA*A( K, J )
- END IF
- DO 150, I = 1, M
- C( I, J ) = C( I, J ) + TEMP1*B( I, K )
- 150 CONTINUE
- 160 CONTINUE
- 170 CONTINUE
- END IF
- C
- RETURN
- C
- C End of SSYMM .
- C
- END
|