123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- *DECK SSYR2K
- SUBROUTINE SSYR2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
- $ C, LDC)
- C***BEGIN PROLOGUE SSYR2K
- C***PURPOSE Perform symmetric rank 2k update of a real symmetric matrix
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B6
- C***TYPE SINGLE PRECISION (SSYR2-S, DSYR2-D, CSYR2-C, SSYR2K-S)
- C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J., (ANL)
- C Duff, I., (AERE)
- C Du Croz, J., (NAG)
- C Hammarling, S. (NAG)
- C***DESCRIPTION
- C
- C SSYR2K performs one of the symmetric rank 2k operations
- C
- C C := alpha*A*B' + alpha*B*A' + beta*C,
- C
- C or
- C
- C C := alpha*A'*B + alpha*B'*A + beta*C,
- C
- C where alpha and beta are scalars, C is an n by n symmetric matrix
- C and A and B are n by k matrices in the first case and k by n
- C matrices in the second case.
- C
- C Parameters
- C ==========
- C
- C UPLO - CHARACTER*1.
- C On entry, UPLO specifies whether the upper or lower
- C triangular part of the array C is to be referenced as
- C follows:
- C
- C UPLO = 'U' or 'u' Only the upper triangular part of C
- C is to be referenced.
- C
- C UPLO = 'L' or 'l' Only the lower triangular part of C
- C is to be referenced.
- C
- C Unchanged on exit.
- C
- C TRANS - CHARACTER*1.
- C On entry, TRANS specifies the operation to be performed as
- C follows:
- C
- C TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
- C beta*C.
- C
- C TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
- C beta*C.
- C
- C TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
- C beta*C.
- C
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the order of the matrix C. N must be
- C at least zero.
- C Unchanged on exit.
- C
- C K - INTEGER.
- C On entry with TRANS = 'N' or 'n', K specifies the number
- C of columns of the matrices A and B, and on entry with
- C TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
- C of rows of the matrices A and B. K must be at least zero.
- C Unchanged on exit.
- C
- C ALPHA - REAL .
- C On entry, ALPHA specifies the scalar alpha.
- C Unchanged on exit.
- C
- C A - REAL array of DIMENSION ( LDA, ka ), where ka is
- C k when TRANS = 'N' or 'n', and is n otherwise.
- C Before entry with TRANS = 'N' or 'n', the leading n by k
- C part of the array A must contain the matrix A, otherwise
- C the leading k by n part of the array A must contain the
- C matrix A.
- C Unchanged on exit.
- C
- C LDA - INTEGER.
- C On entry, LDA specifies the first dimension of A as declared
- C in the calling (sub) program. When TRANS = 'N' or 'n'
- C then LDA must be at least max( 1, n ), otherwise LDA must
- C be at least max( 1, k ).
- C Unchanged on exit.
- C
- C B - REAL array of DIMENSION ( LDB, kb ), where kb is
- C k when TRANS = 'N' or 'n', and is n otherwise.
- C Before entry with TRANS = 'N' or 'n', the leading n by k
- C part of the array B must contain the matrix B, otherwise
- C the leading k by n part of the array B must contain the
- C matrix B.
- C Unchanged on exit.
- C
- C LDB - INTEGER.
- C On entry, LDB specifies the first dimension of B as declared
- C in the calling (sub) program. When TRANS = 'N' or 'n'
- C then LDB must be at least max( 1, n ), otherwise LDB must
- C be at least max( 1, k ).
- C Unchanged on exit.
- C
- C BETA - REAL .
- C On entry, BETA specifies the scalar beta.
- C Unchanged on exit.
- C
- C C - REAL array of DIMENSION ( LDC, n ).
- C Before entry with UPLO = 'U' or 'u', the leading n by n
- C upper triangular part of the array C must contain the upper
- C triangular part of the symmetric matrix and the strictly
- C lower triangular part of C is not referenced. On exit, the
- C upper triangular part of the array C is overwritten by the
- C upper triangular part of the updated matrix.
- C Before entry with UPLO = 'L' or 'l', the leading n by n
- C lower triangular part of the array C must contain the lower
- C triangular part of the symmetric matrix and the strictly
- C upper triangular part of C is not referenced. On exit, the
- C lower triangular part of the array C is overwritten by the
- C lower triangular part of the updated matrix.
- C
- C LDC - INTEGER.
- C On entry, LDC specifies the first dimension of C as declared
- C in the calling (sub) program. LDC must be at least
- C max( 1, n ).
- C Unchanged on exit.
- C
- C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
- C A set of level 3 basic linear algebra subprograms.
- C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 890208 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE SSYR2K
- C .. Scalar Arguments ..
- CHARACTER*1 UPLO, TRANS
- INTEGER N, K, LDA, LDB, LDC
- REAL ALPHA, BETA
- C .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), C( LDC, * )
- C
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C .. Intrinsic Functions ..
- INTRINSIC MAX
- C .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, INFO, J, L, NROWA
- REAL TEMP1, TEMP2
- C .. Parameters ..
- REAL ONE , ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- C***FIRST EXECUTABLE STATEMENT SSYR2K
- C
- C Test the input parameters.
- C
- IF( LSAME( TRANS, 'N' ) )THEN
- NROWA = N
- ELSE
- NROWA = K
- END IF
- UPPER = LSAME( UPLO, 'U' )
- C
- INFO = 0
- IF( ( .NOT.UPPER ).AND.
- $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
- INFO = 1
- ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
- $ ( .NOT.LSAME( TRANS, 'T' ) ).AND.
- $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
- INFO = 2
- ELSE IF( N .LT.0 )THEN
- INFO = 3
- ELSE IF( K .LT.0 )THEN
- INFO = 4
- ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
- INFO = 7
- ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
- INFO = 9
- ELSE IF( LDC.LT.MAX( 1, N ) )THEN
- INFO = 12
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'SSYR2K', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( ( N.EQ.0 ).OR.
- $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- C
- C And when alpha.eq.zero.
- C
- IF( ALPHA.EQ.ZERO )THEN
- IF( UPPER )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 20, J = 1, N
- DO 10, I = 1, J
- C( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- DO 30, I = 1, J
- C( I, J ) = BETA*C( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- ELSE
- IF( BETA.EQ.ZERO )THEN
- DO 60, J = 1, N
- DO 50, I = J, N
- C( I, J ) = ZERO
- 50 CONTINUE
- 60 CONTINUE
- ELSE
- DO 80, J = 1, N
- DO 70, I = J, N
- C( I, J ) = BETA*C( I, J )
- 70 CONTINUE
- 80 CONTINUE
- END IF
- END IF
- RETURN
- END IF
- C
- C Start the operations.
- C
- IF( LSAME( TRANS, 'N' ) )THEN
- C
- C Form C := alpha*A*B' + alpha*B*A' + C.
- C
- IF( UPPER )THEN
- DO 130, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 90, I = 1, J
- C( I, J ) = ZERO
- 90 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 100, I = 1, J
- C( I, J ) = BETA*C( I, J )
- 100 CONTINUE
- END IF
- DO 120, L = 1, K
- IF( ( A( J, L ).NE.ZERO ).OR.
- $ ( B( J, L ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*B( J, L )
- TEMP2 = ALPHA*A( J, L )
- DO 110, I = 1, J
- C( I, J ) = C( I, J ) +
- $ A( I, L )*TEMP1 + B( I, L )*TEMP2
- 110 CONTINUE
- END IF
- 120 CONTINUE
- 130 CONTINUE
- ELSE
- DO 180, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 140, I = J, N
- C( I, J ) = ZERO
- 140 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 150, I = J, N
- C( I, J ) = BETA*C( I, J )
- 150 CONTINUE
- END IF
- DO 170, L = 1, K
- IF( ( A( J, L ).NE.ZERO ).OR.
- $ ( B( J, L ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*B( J, L )
- TEMP2 = ALPHA*A( J, L )
- DO 160, I = J, N
- C( I, J ) = C( I, J ) +
- $ A( I, L )*TEMP1 + B( I, L )*TEMP2
- 160 CONTINUE
- END IF
- 170 CONTINUE
- 180 CONTINUE
- END IF
- ELSE
- C
- C Form C := alpha*A'*B + alpha*B'*A + C.
- C
- IF( UPPER )THEN
- DO 210, J = 1, N
- DO 200, I = 1, J
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 190, L = 1, K
- TEMP1 = TEMP1 + A( L, I )*B( L, J )
- TEMP2 = TEMP2 + B( L, I )*A( L, J )
- 190 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
- ELSE
- C( I, J ) = BETA *C( I, J ) +
- $ ALPHA*TEMP1 + ALPHA*TEMP2
- END IF
- 200 CONTINUE
- 210 CONTINUE
- ELSE
- DO 240, J = 1, N
- DO 230, I = J, N
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 220, L = 1, K
- TEMP1 = TEMP1 + A( L, I )*B( L, J )
- TEMP2 = TEMP2 + B( L, I )*A( L, J )
- 220 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
- ELSE
- C( I, J ) = BETA *C( I, J ) +
- $ ALPHA*TEMP1 + ALPHA*TEMP2
- END IF
- 230 CONTINUE
- 240 CONTINUE
- END IF
- END IF
- C
- RETURN
- C
- C End of SSYR2K.
- C
- END
|