ssyr2k.f 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. *DECK SSYR2K
  2. SUBROUTINE SSYR2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
  3. $ C, LDC)
  4. C***BEGIN PROLOGUE SSYR2K
  5. C***PURPOSE Perform symmetric rank 2k update of a real symmetric matrix
  6. C***LIBRARY SLATEC (BLAS)
  7. C***CATEGORY D1B6
  8. C***TYPE SINGLE PRECISION (SSYR2-S, DSYR2-D, CSYR2-C, SSYR2K-S)
  9. C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
  10. C***AUTHOR Dongarra, J., (ANL)
  11. C Duff, I., (AERE)
  12. C Du Croz, J., (NAG)
  13. C Hammarling, S. (NAG)
  14. C***DESCRIPTION
  15. C
  16. C SSYR2K performs one of the symmetric rank 2k operations
  17. C
  18. C C := alpha*A*B' + alpha*B*A' + beta*C,
  19. C
  20. C or
  21. C
  22. C C := alpha*A'*B + alpha*B'*A + beta*C,
  23. C
  24. C where alpha and beta are scalars, C is an n by n symmetric matrix
  25. C and A and B are n by k matrices in the first case and k by n
  26. C matrices in the second case.
  27. C
  28. C Parameters
  29. C ==========
  30. C
  31. C UPLO - CHARACTER*1.
  32. C On entry, UPLO specifies whether the upper or lower
  33. C triangular part of the array C is to be referenced as
  34. C follows:
  35. C
  36. C UPLO = 'U' or 'u' Only the upper triangular part of C
  37. C is to be referenced.
  38. C
  39. C UPLO = 'L' or 'l' Only the lower triangular part of C
  40. C is to be referenced.
  41. C
  42. C Unchanged on exit.
  43. C
  44. C TRANS - CHARACTER*1.
  45. C On entry, TRANS specifies the operation to be performed as
  46. C follows:
  47. C
  48. C TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
  49. C beta*C.
  50. C
  51. C TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
  52. C beta*C.
  53. C
  54. C TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
  55. C beta*C.
  56. C
  57. C Unchanged on exit.
  58. C
  59. C N - INTEGER.
  60. C On entry, N specifies the order of the matrix C. N must be
  61. C at least zero.
  62. C Unchanged on exit.
  63. C
  64. C K - INTEGER.
  65. C On entry with TRANS = 'N' or 'n', K specifies the number
  66. C of columns of the matrices A and B, and on entry with
  67. C TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
  68. C of rows of the matrices A and B. K must be at least zero.
  69. C Unchanged on exit.
  70. C
  71. C ALPHA - REAL .
  72. C On entry, ALPHA specifies the scalar alpha.
  73. C Unchanged on exit.
  74. C
  75. C A - REAL array of DIMENSION ( LDA, ka ), where ka is
  76. C k when TRANS = 'N' or 'n', and is n otherwise.
  77. C Before entry with TRANS = 'N' or 'n', the leading n by k
  78. C part of the array A must contain the matrix A, otherwise
  79. C the leading k by n part of the array A must contain the
  80. C matrix A.
  81. C Unchanged on exit.
  82. C
  83. C LDA - INTEGER.
  84. C On entry, LDA specifies the first dimension of A as declared
  85. C in the calling (sub) program. When TRANS = 'N' or 'n'
  86. C then LDA must be at least max( 1, n ), otherwise LDA must
  87. C be at least max( 1, k ).
  88. C Unchanged on exit.
  89. C
  90. C B - REAL array of DIMENSION ( LDB, kb ), where kb is
  91. C k when TRANS = 'N' or 'n', and is n otherwise.
  92. C Before entry with TRANS = 'N' or 'n', the leading n by k
  93. C part of the array B must contain the matrix B, otherwise
  94. C the leading k by n part of the array B must contain the
  95. C matrix B.
  96. C Unchanged on exit.
  97. C
  98. C LDB - INTEGER.
  99. C On entry, LDB specifies the first dimension of B as declared
  100. C in the calling (sub) program. When TRANS = 'N' or 'n'
  101. C then LDB must be at least max( 1, n ), otherwise LDB must
  102. C be at least max( 1, k ).
  103. C Unchanged on exit.
  104. C
  105. C BETA - REAL .
  106. C On entry, BETA specifies the scalar beta.
  107. C Unchanged on exit.
  108. C
  109. C C - REAL array of DIMENSION ( LDC, n ).
  110. C Before entry with UPLO = 'U' or 'u', the leading n by n
  111. C upper triangular part of the array C must contain the upper
  112. C triangular part of the symmetric matrix and the strictly
  113. C lower triangular part of C is not referenced. On exit, the
  114. C upper triangular part of the array C is overwritten by the
  115. C upper triangular part of the updated matrix.
  116. C Before entry with UPLO = 'L' or 'l', the leading n by n
  117. C lower triangular part of the array C must contain the lower
  118. C triangular part of the symmetric matrix and the strictly
  119. C upper triangular part of C is not referenced. On exit, the
  120. C lower triangular part of the array C is overwritten by the
  121. C lower triangular part of the updated matrix.
  122. C
  123. C LDC - INTEGER.
  124. C On entry, LDC specifies the first dimension of C as declared
  125. C in the calling (sub) program. LDC must be at least
  126. C max( 1, n ).
  127. C Unchanged on exit.
  128. C
  129. C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
  130. C A set of level 3 basic linear algebra subprograms.
  131. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
  132. C***ROUTINES CALLED LSAME, XERBLA
  133. C***REVISION HISTORY (YYMMDD)
  134. C 890208 DATE WRITTEN
  135. C 910605 Modified to meet SLATEC prologue standards. Only comment
  136. C lines were modified. (BKS)
  137. C***END PROLOGUE SSYR2K
  138. C .. Scalar Arguments ..
  139. CHARACTER*1 UPLO, TRANS
  140. INTEGER N, K, LDA, LDB, LDC
  141. REAL ALPHA, BETA
  142. C .. Array Arguments ..
  143. REAL A( LDA, * ), B( LDB, * ), C( LDC, * )
  144. C
  145. C .. External Functions ..
  146. LOGICAL LSAME
  147. EXTERNAL LSAME
  148. C .. External Subroutines ..
  149. EXTERNAL XERBLA
  150. C .. Intrinsic Functions ..
  151. INTRINSIC MAX
  152. C .. Local Scalars ..
  153. LOGICAL UPPER
  154. INTEGER I, INFO, J, L, NROWA
  155. REAL TEMP1, TEMP2
  156. C .. Parameters ..
  157. REAL ONE , ZERO
  158. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  159. C***FIRST EXECUTABLE STATEMENT SSYR2K
  160. C
  161. C Test the input parameters.
  162. C
  163. IF( LSAME( TRANS, 'N' ) )THEN
  164. NROWA = N
  165. ELSE
  166. NROWA = K
  167. END IF
  168. UPPER = LSAME( UPLO, 'U' )
  169. C
  170. INFO = 0
  171. IF( ( .NOT.UPPER ).AND.
  172. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  173. INFO = 1
  174. ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
  175. $ ( .NOT.LSAME( TRANS, 'T' ) ).AND.
  176. $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
  177. INFO = 2
  178. ELSE IF( N .LT.0 )THEN
  179. INFO = 3
  180. ELSE IF( K .LT.0 )THEN
  181. INFO = 4
  182. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  183. INFO = 7
  184. ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
  185. INFO = 9
  186. ELSE IF( LDC.LT.MAX( 1, N ) )THEN
  187. INFO = 12
  188. END IF
  189. IF( INFO.NE.0 )THEN
  190. CALL XERBLA( 'SSYR2K', INFO )
  191. RETURN
  192. END IF
  193. C
  194. C Quick return if possible.
  195. C
  196. IF( ( N.EQ.0 ).OR.
  197. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
  198. $ RETURN
  199. C
  200. C And when alpha.eq.zero.
  201. C
  202. IF( ALPHA.EQ.ZERO )THEN
  203. IF( UPPER )THEN
  204. IF( BETA.EQ.ZERO )THEN
  205. DO 20, J = 1, N
  206. DO 10, I = 1, J
  207. C( I, J ) = ZERO
  208. 10 CONTINUE
  209. 20 CONTINUE
  210. ELSE
  211. DO 40, J = 1, N
  212. DO 30, I = 1, J
  213. C( I, J ) = BETA*C( I, J )
  214. 30 CONTINUE
  215. 40 CONTINUE
  216. END IF
  217. ELSE
  218. IF( BETA.EQ.ZERO )THEN
  219. DO 60, J = 1, N
  220. DO 50, I = J, N
  221. C( I, J ) = ZERO
  222. 50 CONTINUE
  223. 60 CONTINUE
  224. ELSE
  225. DO 80, J = 1, N
  226. DO 70, I = J, N
  227. C( I, J ) = BETA*C( I, J )
  228. 70 CONTINUE
  229. 80 CONTINUE
  230. END IF
  231. END IF
  232. RETURN
  233. END IF
  234. C
  235. C Start the operations.
  236. C
  237. IF( LSAME( TRANS, 'N' ) )THEN
  238. C
  239. C Form C := alpha*A*B' + alpha*B*A' + C.
  240. C
  241. IF( UPPER )THEN
  242. DO 130, J = 1, N
  243. IF( BETA.EQ.ZERO )THEN
  244. DO 90, I = 1, J
  245. C( I, J ) = ZERO
  246. 90 CONTINUE
  247. ELSE IF( BETA.NE.ONE )THEN
  248. DO 100, I = 1, J
  249. C( I, J ) = BETA*C( I, J )
  250. 100 CONTINUE
  251. END IF
  252. DO 120, L = 1, K
  253. IF( ( A( J, L ).NE.ZERO ).OR.
  254. $ ( B( J, L ).NE.ZERO ) )THEN
  255. TEMP1 = ALPHA*B( J, L )
  256. TEMP2 = ALPHA*A( J, L )
  257. DO 110, I = 1, J
  258. C( I, J ) = C( I, J ) +
  259. $ A( I, L )*TEMP1 + B( I, L )*TEMP2
  260. 110 CONTINUE
  261. END IF
  262. 120 CONTINUE
  263. 130 CONTINUE
  264. ELSE
  265. DO 180, J = 1, N
  266. IF( BETA.EQ.ZERO )THEN
  267. DO 140, I = J, N
  268. C( I, J ) = ZERO
  269. 140 CONTINUE
  270. ELSE IF( BETA.NE.ONE )THEN
  271. DO 150, I = J, N
  272. C( I, J ) = BETA*C( I, J )
  273. 150 CONTINUE
  274. END IF
  275. DO 170, L = 1, K
  276. IF( ( A( J, L ).NE.ZERO ).OR.
  277. $ ( B( J, L ).NE.ZERO ) )THEN
  278. TEMP1 = ALPHA*B( J, L )
  279. TEMP2 = ALPHA*A( J, L )
  280. DO 160, I = J, N
  281. C( I, J ) = C( I, J ) +
  282. $ A( I, L )*TEMP1 + B( I, L )*TEMP2
  283. 160 CONTINUE
  284. END IF
  285. 170 CONTINUE
  286. 180 CONTINUE
  287. END IF
  288. ELSE
  289. C
  290. C Form C := alpha*A'*B + alpha*B'*A + C.
  291. C
  292. IF( UPPER )THEN
  293. DO 210, J = 1, N
  294. DO 200, I = 1, J
  295. TEMP1 = ZERO
  296. TEMP2 = ZERO
  297. DO 190, L = 1, K
  298. TEMP1 = TEMP1 + A( L, I )*B( L, J )
  299. TEMP2 = TEMP2 + B( L, I )*A( L, J )
  300. 190 CONTINUE
  301. IF( BETA.EQ.ZERO )THEN
  302. C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
  303. ELSE
  304. C( I, J ) = BETA *C( I, J ) +
  305. $ ALPHA*TEMP1 + ALPHA*TEMP2
  306. END IF
  307. 200 CONTINUE
  308. 210 CONTINUE
  309. ELSE
  310. DO 240, J = 1, N
  311. DO 230, I = J, N
  312. TEMP1 = ZERO
  313. TEMP2 = ZERO
  314. DO 220, L = 1, K
  315. TEMP1 = TEMP1 + A( L, I )*B( L, J )
  316. TEMP2 = TEMP2 + B( L, I )*A( L, J )
  317. 220 CONTINUE
  318. IF( BETA.EQ.ZERO )THEN
  319. C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
  320. ELSE
  321. C( I, J ) = BETA *C( I, J ) +
  322. $ ALPHA*TEMP1 + ALPHA*TEMP2
  323. END IF
  324. 230 CONTINUE
  325. 240 CONTINUE
  326. END IF
  327. END IF
  328. C
  329. RETURN
  330. C
  331. C End of SSYR2K.
  332. C
  333. END