stbsv.f 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. *DECK STBSV
  2. SUBROUTINE STBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
  3. C***BEGIN PROLOGUE STBSV
  4. C***PURPOSE Solve a real triangular banded system of linear equations.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE SINGLE PRECISION (STBSV-S, DTBSV-D, CTBSV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C STBSV solves one of the systems of equations
  16. C
  17. C A*x = b, or A'*x = b,
  18. C
  19. C where b and x are n element vectors and A is an n by n unit, or
  20. C non-unit, upper or lower triangular band matrix, with ( k + 1)
  21. C diagonals.
  22. C
  23. C No test for singularity or near-singularity is included in this
  24. C routine. Such tests must be performed before calling this routine.
  25. C
  26. C Parameters
  27. C ==========
  28. C
  29. C UPLO - CHARACTER*1.
  30. C On entry, UPLO specifies whether the matrix is an upper or
  31. C lower triangular matrix as follows:
  32. C
  33. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  34. C
  35. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  36. C
  37. C Unchanged on exit.
  38. C
  39. C TRANS - CHARACTER*1.
  40. C On entry, TRANS specifies the equations to be solved as
  41. C follows:
  42. C
  43. C TRANS = 'N' or 'n' A*x = b.
  44. C
  45. C TRANS = 'T' or 't' A'*x = b.
  46. C
  47. C TRANS = 'C' or 'c' A'*x = b.
  48. C
  49. C Unchanged on exit.
  50. C
  51. C DIAG - CHARACTER*1.
  52. C On entry, DIAG specifies whether or not A is unit
  53. C triangular as follows:
  54. C
  55. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  56. C
  57. C DIAG = 'N' or 'n' A is not assumed to be unit
  58. C triangular.
  59. C
  60. C Unchanged on exit.
  61. C
  62. C N - INTEGER.
  63. C On entry, N specifies the order of the matrix A.
  64. C N must be at least zero.
  65. C Unchanged on exit.
  66. C
  67. C K - INTEGER.
  68. C On entry with UPLO = 'U' or 'u', K specifies the number of
  69. C super-diagonals of the matrix A.
  70. C On entry with UPLO = 'L' or 'l', K specifies the number of
  71. C sub-diagonals of the matrix A.
  72. C K must satisfy 0 .le. K.
  73. C Unchanged on exit.
  74. C
  75. C A - REAL array of DIMENSION ( LDA, n ).
  76. C Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  77. C by n part of the array A must contain the upper triangular
  78. C band part of the matrix of coefficients, supplied column by
  79. C column, with the leading diagonal of the matrix in row
  80. C ( k + 1 ) of the array, the first super-diagonal starting at
  81. C position 2 in row k, and so on. The top left k by k triangle
  82. C of the array A is not referenced.
  83. C The following program segment will transfer an upper
  84. C triangular band matrix from conventional full matrix storage
  85. C to band storage:
  86. C
  87. C DO 20, J = 1, N
  88. C M = K + 1 - J
  89. C DO 10, I = MAX( 1, J - K ), J
  90. C A( M + I, J ) = matrix( I, J )
  91. C 10 CONTINUE
  92. C 20 CONTINUE
  93. C
  94. C Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  95. C by n part of the array A must contain the lower triangular
  96. C band part of the matrix of coefficients, supplied column by
  97. C column, with the leading diagonal of the matrix in row 1 of
  98. C the array, the first sub-diagonal starting at position 1 in
  99. C row 2, and so on. The bottom right k by k triangle of the
  100. C array A is not referenced.
  101. C The following program segment will transfer a lower
  102. C triangular band matrix from conventional full matrix storage
  103. C to band storage:
  104. C
  105. C DO 20, J = 1, N
  106. C M = 1 - J
  107. C DO 10, I = J, MIN( N, J + K )
  108. C A( M + I, J ) = matrix( I, J )
  109. C 10 CONTINUE
  110. C 20 CONTINUE
  111. C
  112. C Note that when DIAG = 'U' or 'u' the elements of the array A
  113. C corresponding to the diagonal elements of the matrix are not
  114. C referenced, but are assumed to be unity.
  115. C Unchanged on exit.
  116. C
  117. C LDA - INTEGER.
  118. C On entry, LDA specifies the first dimension of A as declared
  119. C in the calling (sub) program. LDA must be at least
  120. C ( k + 1 ).
  121. C Unchanged on exit.
  122. C
  123. C X - REAL array of dimension at least
  124. C ( 1 + ( n - 1 )*abs( INCX ) ).
  125. C Before entry, the incremented array X must contain the n
  126. C element right-hand side vector b. On exit, X is overwritten
  127. C with the solution vector x.
  128. C
  129. C INCX - INTEGER.
  130. C On entry, INCX specifies the increment for the elements of
  131. C X. INCX must not be zero.
  132. C Unchanged on exit.
  133. C
  134. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  135. C Hanson, R. J. An extended set of Fortran basic linear
  136. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  137. C pp. 1-17, March 1988.
  138. C***ROUTINES CALLED LSAME, XERBLA
  139. C***REVISION HISTORY (YYMMDD)
  140. C 861022 DATE WRITTEN
  141. C 910605 Modified to meet SLATEC prologue standards. Only comment
  142. C lines were modified. (BKS)
  143. C***END PROLOGUE STBSV
  144. C .. Scalar Arguments ..
  145. INTEGER INCX, K, LDA, N
  146. CHARACTER*1 DIAG, TRANS, UPLO
  147. C .. Array Arguments ..
  148. REAL A( LDA, * ), X( * )
  149. C .. Parameters ..
  150. REAL ZERO
  151. PARAMETER ( ZERO = 0.0E+0 )
  152. C .. Local Scalars ..
  153. REAL TEMP
  154. INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L
  155. LOGICAL NOUNIT
  156. C .. External Functions ..
  157. LOGICAL LSAME
  158. EXTERNAL LSAME
  159. C .. External Subroutines ..
  160. EXTERNAL XERBLA
  161. C .. Intrinsic Functions ..
  162. INTRINSIC MAX, MIN
  163. C***FIRST EXECUTABLE STATEMENT STBSV
  164. C
  165. C Test the input parameters.
  166. C
  167. INFO = 0
  168. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  169. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  170. INFO = 1
  171. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  172. $ .NOT.LSAME( TRANS, 'T' ).AND.
  173. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  174. INFO = 2
  175. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  176. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  177. INFO = 3
  178. ELSE IF( N.LT.0 )THEN
  179. INFO = 4
  180. ELSE IF( K.LT.0 )THEN
  181. INFO = 5
  182. ELSE IF( LDA.LT.( K + 1 ) )THEN
  183. INFO = 7
  184. ELSE IF( INCX.EQ.0 )THEN
  185. INFO = 9
  186. END IF
  187. IF( INFO.NE.0 )THEN
  188. CALL XERBLA( 'STBSV ', INFO )
  189. RETURN
  190. END IF
  191. C
  192. C Quick return if possible.
  193. C
  194. IF( N.EQ.0 )
  195. $ RETURN
  196. C
  197. NOUNIT = LSAME( DIAG, 'N' )
  198. C
  199. C Set up the start point in X if the increment is not unity. This
  200. C will be ( N - 1 )*INCX too small for descending loops.
  201. C
  202. IF( INCX.LE.0 )THEN
  203. KX = 1 - ( N - 1 )*INCX
  204. ELSE IF( INCX.NE.1 )THEN
  205. KX = 1
  206. END IF
  207. C
  208. C Start the operations. In this version the elements of A are
  209. C accessed by sequentially with one pass through A.
  210. C
  211. IF( LSAME( TRANS, 'N' ) )THEN
  212. C
  213. C Form x := inv( A )*x.
  214. C
  215. IF( LSAME( UPLO, 'U' ) )THEN
  216. KPLUS1 = K + 1
  217. IF( INCX.EQ.1 )THEN
  218. DO 20, J = N, 1, -1
  219. IF( X( J ).NE.ZERO )THEN
  220. L = KPLUS1 - J
  221. IF( NOUNIT )
  222. $ X( J ) = X( J )/A( KPLUS1, J )
  223. TEMP = X( J )
  224. DO 10, I = J - 1, MAX( 1, J - K ), -1
  225. X( I ) = X( I ) - TEMP*A( L + I, J )
  226. 10 CONTINUE
  227. END IF
  228. 20 CONTINUE
  229. ELSE
  230. KX = KX + ( N - 1 )*INCX
  231. JX = KX
  232. DO 40, J = N, 1, -1
  233. KX = KX - INCX
  234. IF( X( JX ).NE.ZERO )THEN
  235. IX = KX
  236. L = KPLUS1 - J
  237. IF( NOUNIT )
  238. $ X( JX ) = X( JX )/A( KPLUS1, J )
  239. TEMP = X( JX )
  240. DO 30, I = J - 1, MAX( 1, J - K ), -1
  241. X( IX ) = X( IX ) - TEMP*A( L + I, J )
  242. IX = IX - INCX
  243. 30 CONTINUE
  244. END IF
  245. JX = JX - INCX
  246. 40 CONTINUE
  247. END IF
  248. ELSE
  249. IF( INCX.EQ.1 )THEN
  250. DO 60, J = 1, N
  251. IF( X( J ).NE.ZERO )THEN
  252. L = 1 - J
  253. IF( NOUNIT )
  254. $ X( J ) = X( J )/A( 1, J )
  255. TEMP = X( J )
  256. DO 50, I = J + 1, MIN( N, J + K )
  257. X( I ) = X( I ) - TEMP*A( L + I, J )
  258. 50 CONTINUE
  259. END IF
  260. 60 CONTINUE
  261. ELSE
  262. JX = KX
  263. DO 80, J = 1, N
  264. KX = KX + INCX
  265. IF( X( JX ).NE.ZERO )THEN
  266. IX = KX
  267. L = 1 - J
  268. IF( NOUNIT )
  269. $ X( JX ) = X( JX )/A( 1, J )
  270. TEMP = X( JX )
  271. DO 70, I = J + 1, MIN( N, J + K )
  272. X( IX ) = X( IX ) - TEMP*A( L + I, J )
  273. IX = IX + INCX
  274. 70 CONTINUE
  275. END IF
  276. JX = JX + INCX
  277. 80 CONTINUE
  278. END IF
  279. END IF
  280. ELSE
  281. C
  282. C Form x := inv( A')*x.
  283. C
  284. IF( LSAME( UPLO, 'U' ) )THEN
  285. KPLUS1 = K + 1
  286. IF( INCX.EQ.1 )THEN
  287. DO 100, J = 1, N
  288. TEMP = X( J )
  289. L = KPLUS1 - J
  290. DO 90, I = MAX( 1, J - K ), J - 1
  291. TEMP = TEMP - A( L + I, J )*X( I )
  292. 90 CONTINUE
  293. IF( NOUNIT )
  294. $ TEMP = TEMP/A( KPLUS1, J )
  295. X( J ) = TEMP
  296. 100 CONTINUE
  297. ELSE
  298. JX = KX
  299. DO 120, J = 1, N
  300. TEMP = X( JX )
  301. IX = KX
  302. L = KPLUS1 - J
  303. DO 110, I = MAX( 1, J - K ), J - 1
  304. TEMP = TEMP - A( L + I, J )*X( IX )
  305. IX = IX + INCX
  306. 110 CONTINUE
  307. IF( NOUNIT )
  308. $ TEMP = TEMP/A( KPLUS1, J )
  309. X( JX ) = TEMP
  310. JX = JX + INCX
  311. IF( J.GT.K )
  312. $ KX = KX + INCX
  313. 120 CONTINUE
  314. END IF
  315. ELSE
  316. IF( INCX.EQ.1 )THEN
  317. DO 140, J = N, 1, -1
  318. TEMP = X( J )
  319. L = 1 - J
  320. DO 130, I = MIN( N, J + K ), J + 1, -1
  321. TEMP = TEMP - A( L + I, J )*X( I )
  322. 130 CONTINUE
  323. IF( NOUNIT )
  324. $ TEMP = TEMP/A( 1, J )
  325. X( J ) = TEMP
  326. 140 CONTINUE
  327. ELSE
  328. KX = KX + ( N - 1 )*INCX
  329. JX = KX
  330. DO 160, J = N, 1, -1
  331. TEMP = X( JX )
  332. IX = KX
  333. L = 1 - J
  334. DO 150, I = MIN( N, J + K ), J + 1, -1
  335. TEMP = TEMP - A( L + I, J )*X( IX )
  336. IX = IX - INCX
  337. 150 CONTINUE
  338. IF( NOUNIT )
  339. $ TEMP = TEMP/A( 1, J )
  340. X( JX ) = TEMP
  341. JX = JX - INCX
  342. IF( ( N - J ).GE.K )
  343. $ KX = KX - INCX
  344. 160 CONTINUE
  345. END IF
  346. END IF
  347. END IF
  348. C
  349. RETURN
  350. C
  351. C End of STBSV .
  352. C
  353. END