123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- *DECK STOD
- SUBROUTINE STOD (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, WM, IWM,
- + F, JAC, RPAR, IPAR)
- C***BEGIN PROLOGUE STOD
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to DEBDF
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (STOD-S, DSTOD-D)
- C***AUTHOR Watts, H. A., (SNLA)
- C***DESCRIPTION
- C
- C STOD integrates a system of first order odes over one step in the
- C integrator package DEBDF.
- C ----------------------------------------------------------------------
- C STOD performs one step of the integration of an initial value
- C problem for a system of ordinary differential equations.
- C Note.. STOD is independent of the value of the iteration method
- C indicator MITER, when this is .NE. 0, and hence is independent
- C of the type of chord method used, or the Jacobian structure.
- C Communication with STOD is done with the following variables..
- C
- C Y = An array of length .GE. n used as the Y argument in
- C all calls to F and JAC.
- C NEQ = Integer array containing problem size in NEQ(1), and
- C passed as the NEQ argument in all calls to F and JAC.
- C YH = An NYH by LMAX array containing the dependent variables
- C and their approximate scaled derivatives, where
- C LMAX = MAXORD + 1. YH(I,J+1) contains the approximate
- C J-th derivative of Y(I), scaled by H**J/Factorial(j)
- C (J = 0,1,...,NQ). On entry for the first step, the first
- C two columns of YH must be set from the initial values.
- C NYH = A constant integer .GE. N, the first dimension of YH.
- C YH1 = A one-dimensional array occupying the same space as YH.
- C EWT = An array of N elements with which the estimated local
- C errors in YH are compared.
- C SAVF = An array of working storage, of length N.
- C ACOR = A work array of length N, used for the accumulated
- C corrections. On a successful return, ACOR(I) contains
- C the estimated one-step local error in Y(I).
- C WM,IWM = Real and integer work arrays associated with matrix
- C operations in chord iteration (MITER .NE. 0).
- C PJAC = Name of routine to evaluate and preprocess Jacobian matrix
- C if a chord method is being used.
- C SLVS = Name of routine to solve linear system in chord iteration.
- C H = The step size to be attempted on the next step.
- C H is altered by the error control algorithm during the
- C problem. H can be either positive or negative, but its
- C sign must remain constant throughout the problem.
- C HMIN = The minimum absolute value of the step size H to be used.
- C HMXI = Inverse of the maximum absolute value of H to be used.
- C HMXI = 0.0 is allowed and corresponds to an infinite HMAX.
- C HMIN and HMXI may be changed at any time, but will not
- C take effect until the next change of H is considered.
- C TN = The independent variable. TN is updated on each step taken.
- C JSTART = An integer used for input only, with the following
- C values and meanings..
- C 0 Perform the first step.
- C .GT.0 Take a new step continuing from the last.
- C -1 Take the next step with a new value of H, MAXORD,
- C N, METH, MITER, and/or matrix parameters.
- C -2 Take the next step with a new value of H,
- C but with other inputs unchanged.
- C On return, JSTART is set to 1 to facilitate continuation.
- C KFLAG = a completion code with the following meanings..
- C 0 The step was successful.
- C -1 The requested error could not be achieved.
- C -2 Corrector convergence could not be achieved.
- C A return with KFLAG = -1 or -2 means either
- C ABS(H) = HMIN or 10 consecutive failures occurred.
- C On a return with KFLAG negative, the values of TN and
- C the YH array are as of the beginning of the last
- C step, and H is the last step size attempted.
- C MAXORD = The maximum order of integration method to be allowed.
- C METH/MITER = The method flags. See description in driver.
- C N = The number of first-order differential equations.
- C ----------------------------------------------------------------------
- C
- C***SEE ALSO DEBDF
- C***ROUTINES CALLED CFOD, PJAC, SLVS, VNWRMS
- C***COMMON BLOCKS DEBDF1
- C***REVISION HISTORY (YYMMDD)
- C 800901 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900328 Added TYPE section. (WRB)
- C 910722 Updated AUTHOR section. (ALS)
- C 920422 Changed DIMENSION statement. (WRB)
- C***END PROLOGUE STOD
- EXTERNAL F, JAC
- C
- CLLL. OPTIMIZE
- INTEGER NEQ, NYH, IWM, I, I1, IALTH, IER, IOWND, IREDO, IRET,
- 1 IPUP, J, JB, JSTART, KFLAG, L, LMAX, M, MAXORD, MEO, METH,
- 2 MITER, N, NCF, NEWQ, NFE, NJE, NQ, NQNYH, NQU, NST, NSTEPJ
- REAL Y, YH, YH1, EWT, SAVF, ACOR, WM,
- 1 ROWND, CONIT, CRATE, EL, ELCO, HOLD, RC, RMAX, TESCO,
- 2 EL0, H, HMIN, HMXI, HU, TN, UROUND,
- 3 DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP,
- 4 R, RH, RHDN, RHSM, RHUP, TOLD, VNWRMS
- DIMENSION Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*),
- 1 ACOR(*), WM(*), IWM(*), RPAR(*), IPAR(*)
- COMMON /DEBDF1/ ROWND, CONIT, CRATE, EL(13), ELCO(13,12),
- 1 HOLD, RC, RMAX, TESCO(3,12),
- 2 EL0, H, HMIN, HMXI, HU, TN, UROUND, IOWND(7), KSTEPS, IOD(6),
- 3 IALTH, IPUP, LMAX, MEO, NQNYH, NSTEPJ,
- 4 IER, JSTART, KFLAG, L, METH, MITER, MAXORD, N, NQ, NST, NFE,
- 5 NJE, NQU
- C
- C
- C***FIRST EXECUTABLE STATEMENT STOD
- KFLAG = 0
- TOLD = TN
- NCF = 0
- IF (JSTART .GT. 0) GO TO 200
- IF (JSTART .EQ. -1) GO TO 100
- IF (JSTART .EQ. -2) GO TO 160
- C-----------------------------------------------------------------------
- C ON THE FIRST CALL, THE ORDER IS SET TO 1, AND OTHER VARIABLES ARE
- C INITIALIZED. RMAX IS THE MAXIMUM RATIO BY WHICH H CAN BE INCREASED
- C IN A SINGLE STEP. IT IS INITIALLY 1.E4 TO COMPENSATE FOR THE SMALL
- C INITIAL H, BUT THEN IS NORMALLY EQUAL TO 10. IF A FAILURE
- C OCCURS (IN CORRECTOR CONVERGENCE OR ERROR TEST), RMAX IS SET AT 2
- C FOR THE NEXT INCREASE.
- C-----------------------------------------------------------------------
- LMAX = MAXORD + 1
- NQ = 1
- L = 2
- IALTH = 2
- RMAX = 10000.0E0
- RC = 0.0E0
- EL0 = 1.0E0
- CRATE = 0.7E0
- DELP = 0.0E0
- HOLD = H
- MEO = METH
- NSTEPJ = 0
- IRET = 3
- GO TO 140
- C-----------------------------------------------------------------------
- C THE FOLLOWING BLOCK HANDLES PRELIMINARIES NEEDED WHEN JSTART = -1.
- C IPUP IS SET TO MITER TO FORCE A MATRIX UPDATE.
- C IF AN ORDER INCREASE IS ABOUT TO BE CONSIDERED (IALTH = 1),
- C IALTH IS RESET TO 2 TO POSTPONE CONSIDERATION ONE MORE STEP.
- C IF THE CALLER HAS CHANGED METH, CFOD IS CALLED TO RESET
- C THE COEFFICIENTS OF THE METHOD.
- C IF THE CALLER HAS CHANGED MAXORD TO A VALUE LESS THAN THE CURRENT
- C ORDER NQ, NQ IS REDUCED TO MAXORD, AND A NEW H CHOSEN ACCORDINGLY.
- C IF H IS TO BE CHANGED, YH MUST BE RESCALED.
- C IF H OR METH IS BEING CHANGED, IALTH IS RESET TO L = NQ + 1
- C TO PREVENT FURTHER CHANGES IN H FOR THAT MANY STEPS.
- C-----------------------------------------------------------------------
- 100 IPUP = MITER
- LMAX = MAXORD + 1
- IF (IALTH .EQ. 1) IALTH = 2
- IF (METH .EQ. MEO) GO TO 110
- CALL CFOD (METH, ELCO, TESCO)
- MEO = METH
- IF (NQ .GT. MAXORD) GO TO 120
- IALTH = L
- IRET = 1
- GO TO 150
- 110 IF (NQ .LE. MAXORD) GO TO 160
- 120 NQ = MAXORD
- L = LMAX
- DO 125 I = 1,L
- 125 EL(I) = ELCO(I,NQ)
- NQNYH = NQ*NYH
- RC = RC*EL(1)/EL0
- EL0 = EL(1)
- CONIT = 0.5E0/(NQ+2)
- DDN = VNWRMS (N, SAVF, EWT)/TESCO(1,L)
- EXDN = 1.0E0/L
- RHDN = 1.0E0/(1.3E0*DDN**EXDN + 0.0000013E0)
- RH = MIN(RHDN,1.0E0)
- IREDO = 3
- IF (H .EQ. HOLD) GO TO 170
- RH = MIN(RH,ABS(H/HOLD))
- H = HOLD
- GO TO 175
- C-----------------------------------------------------------------------
- C CFOD IS CALLED TO GET ALL THE INTEGRATION COEFFICIENTS FOR THE
- C CURRENT METH. THEN THE EL VECTOR AND RELATED CONSTANTS ARE RESET
- C WHENEVER THE ORDER NQ IS CHANGED, OR AT THE START OF THE PROBLEM.
- C-----------------------------------------------------------------------
- 140 CALL CFOD (METH, ELCO, TESCO)
- 150 DO 155 I = 1,L
- 155 EL(I) = ELCO(I,NQ)
- NQNYH = NQ*NYH
- RC = RC*EL(1)/EL0
- EL0 = EL(1)
- CONIT = 0.5E0/(NQ+2)
- GO TO (160, 170, 200), IRET
- C-----------------------------------------------------------------------
- C IF H IS BEING CHANGED, THE H RATIO RH IS CHECKED AGAINST
- C RMAX, HMIN, AND HMXI, AND THE YH ARRAY RESCALED. IALTH IS SET TO
- C L = NQ + 1 TO PREVENT A CHANGE OF H FOR THAT MANY STEPS, UNLESS
- C FORCED BY A CONVERGENCE OR ERROR TEST FAILURE.
- C-----------------------------------------------------------------------
- 160 IF (H .EQ. HOLD) GO TO 200
- RH = H/HOLD
- H = HOLD
- IREDO = 3
- GO TO 175
- 170 RH = MAX(RH,HMIN/ABS(H))
- 175 RH = MIN(RH,RMAX)
- RH = RH/MAX(1.0E0,ABS(H)*HMXI*RH)
- R = 1.0E0
- DO 180 J = 2,L
- R = R*RH
- DO 180 I = 1,N
- 180 YH(I,J) = YH(I,J)*R
- H = H*RH
- RC = RC*RH
- IALTH = L
- IF (IREDO .EQ. 0) GO TO 680
- C-----------------------------------------------------------------------
- C THIS SECTION COMPUTES THE PREDICTED VALUES BY EFFECTIVELY
- C MULTIPLYING THE YH ARRAY BY THE PASCAL TRIANGLE MATRIX.
- C RC IS THE RATIO OF NEW TO OLD VALUES OF THE COEFFICIENT H*EL(1).
- C WHEN RC DIFFERS FROM 1 BY MORE THAN 30 PERCENT, IPUP IS SET TO MITER
- C TO FORCE PJAC TO BE CALLED, IF A JACOBIAN IS INVOLVED.
- C IN ANY CASE, PJAC IS CALLED AT LEAST EVERY 20-TH STEP.
- C-----------------------------------------------------------------------
- 200 IF (ABS(RC-1.0E0) .GT. 0.3E0) IPUP = MITER
- IF (NST .GE. NSTEPJ+20) IPUP = MITER
- TN = TN + H
- I1 = NQNYH + 1
- DO 215 JB = 1,NQ
- I1 = I1 - NYH
- DO 210 I = I1,NQNYH
- 210 YH1(I) = YH1(I) + YH1(I+NYH)
- 215 CONTINUE
- KSTEPS = KSTEPS + 1
- C-----------------------------------------------------------------------
- C UP TO 3 CORRECTOR ITERATIONS ARE TAKEN. A CONVERGENCE TEST IS
- C MADE ON THE R.M.S. NORM OF EACH CORRECTION, WEIGHTED BY THE ERROR
- C WEIGHT VECTOR EWT. THE SUM OF THE CORRECTIONS IS ACCUMULATED IN THE
- C VECTOR ACOR(I). THE YH ARRAY IS NOT ALTERED IN THE CORRECTOR LOOP.
- C-----------------------------------------------------------------------
- 220 M = 0
- DO 230 I = 1,N
- 230 Y(I) = YH(I,1)
- CALL F (TN, Y, SAVF, RPAR, IPAR)
- NFE = NFE + 1
- IF (IPUP .LE. 0) GO TO 250
- C-----------------------------------------------------------------------
- C IF INDICATED, THE MATRIX P = I - H*EL(1)*J IS REEVALUATED AND
- C PREPROCESSED BEFORE STARTING THE CORRECTOR ITERATION. IPUP IS SET
- C TO 0 AS AN INDICATOR THAT THIS HAS BEEN DONE.
- C-----------------------------------------------------------------------
- IPUP = 0
- RC = 1.0E0
- NSTEPJ = NST
- CRATE = 0.7E0
- CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC,
- 1 RPAR, IPAR)
- IF (IER .NE. 0) GO TO 430
- 250 DO 260 I = 1,N
- 260 ACOR(I) = 0.0E0
- 270 IF (MITER .NE. 0) GO TO 350
- C-----------------------------------------------------------------------
- C IN THE CASE OF FUNCTIONAL ITERATION, UPDATE Y DIRECTLY FROM
- C THE RESULT OF THE LAST FUNCTION EVALUATION.
- C-----------------------------------------------------------------------
- DO 290 I = 1,N
- SAVF(I) = H*SAVF(I) - YH(I,2)
- 290 Y(I) = SAVF(I) - ACOR(I)
- DEL = VNWRMS (N, Y, EWT)
- DO 300 I = 1,N
- Y(I) = YH(I,1) + EL(1)*SAVF(I)
- 300 ACOR(I) = SAVF(I)
- GO TO 400
- C-----------------------------------------------------------------------
- C IN THE CASE OF THE CHORD METHOD, COMPUTE THE CORRECTOR ERROR,
- C AND SOLVE THE LINEAR SYSTEM WITH THAT AS RIGHT-HAND SIDE AND
- C P AS COEFFICIENT MATRIX.
- C-----------------------------------------------------------------------
- 350 DO 360 I = 1,N
- 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I))
- CALL SLVS (WM, IWM, Y, SAVF)
- IF (IER .NE. 0) GO TO 410
- DEL = VNWRMS (N, Y, EWT)
- DO 380 I = 1,N
- ACOR(I) = ACOR(I) + Y(I)
- 380 Y(I) = YH(I,1) + EL(1)*ACOR(I)
- C-----------------------------------------------------------------------
- C TEST FOR CONVERGENCE. IF M.GT.0, AN ESTIMATE OF THE CONVERGENCE
- C RATE CONSTANT IS STORED IN CRATE, AND THIS IS USED IN THE TEST.
- C-----------------------------------------------------------------------
- 400 IF (M .NE. 0) CRATE = MAX(0.2E0*CRATE,DEL/DELP)
- DCON = DEL*MIN(1.0E0,1.5E0*CRATE)/(TESCO(2,NQ)*CONIT)
- IF (DCON .LE. 1.0E0) GO TO 450
- M = M + 1
- IF (M .EQ. 3) GO TO 410
- IF (M .GE. 2 .AND. DEL .GT. 2.0E0*DELP) GO TO 410
- DELP = DEL
- CALL F (TN, Y, SAVF, RPAR, IPAR)
- NFE = NFE + 1
- GO TO 270
- C-----------------------------------------------------------------------
- C THE CORRECTOR ITERATION FAILED TO CONVERGE IN 3 TRIES.
- C IF MITER .NE. 0 AND THE JACOBIAN IS OUT OF DATE, PJAC IS CALLED FOR
- C THE NEXT TRY. OTHERWISE THE YH ARRAY IS RETRACTED TO ITS VALUES
- C BEFORE PREDICTION, AND H IS REDUCED, IF POSSIBLE. IF H CANNOT BE
- C REDUCED OR 10 FAILURES HAVE OCCURRED, EXIT WITH KFLAG = -2.
- C-----------------------------------------------------------------------
- 410 IF (IPUP .EQ. 0) GO TO 430
- IPUP = MITER
- GO TO 220
- 430 TN = TOLD
- NCF = NCF + 1
- RMAX = 2.0E0
- I1 = NQNYH + 1
- DO 445 JB = 1,NQ
- I1 = I1 - NYH
- DO 440 I = I1,NQNYH
- 440 YH1(I) = YH1(I) - YH1(I+NYH)
- 445 CONTINUE
- IF (ABS(H) .LE. HMIN*1.00001E0) GO TO 670
- IF (NCF .EQ. 10) GO TO 670
- RH = 0.25E0
- IPUP = MITER
- IREDO = 1
- GO TO 170
- C-----------------------------------------------------------------------
- C THE CORRECTOR HAS CONVERGED. IPUP IS SET TO -1 IF MITER .NE. 0,
- C TO SIGNAL THAT THE JACOBIAN INVOLVED MAY NEED UPDATING LATER.
- C THE LOCAL ERROR TEST IS MADE AND CONTROL PASSES TO STATEMENT 500
- C IF IT FAILS.
- C-----------------------------------------------------------------------
- 450 IF (MITER .NE. 0) IPUP = -1
- IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ)
- IF (M .GT. 0) DSM = VNWRMS (N, ACOR, EWT)/TESCO(2,NQ)
- IF (DSM .GT. 1.0E0) GO TO 500
- C-----------------------------------------------------------------------
- C AFTER A SUCCESSFUL STEP, UPDATE THE YH ARRAY.
- C CONSIDER CHANGING H IF IALTH = 1. OTHERWISE DECREASE IALTH BY 1.
- C IF IALTH IS THEN 1 AND NQ .LT. MAXORD, THEN ACOR IS SAVED FOR
- C USE IN A POSSIBLE ORDER INCREASE ON THE NEXT STEP.
- C IF A CHANGE IN H IS CONSIDERED, AN INCREASE OR DECREASE IN ORDER
- C BY ONE IS CONSIDERED ALSO. A CHANGE IN H IS MADE ONLY IF IT IS BY A
- C FACTOR OF AT LEAST 1.1. IF NOT, IALTH IS SET TO 3 TO PREVENT
- C TESTING FOR THAT MANY STEPS.
- C-----------------------------------------------------------------------
- KFLAG = 0
- IREDO = 0
- NST = NST + 1
- HU = H
- NQU = NQ
- DO 470 J = 1,L
- DO 470 I = 1,N
- 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I)
- IALTH = IALTH - 1
- IF (IALTH .EQ. 0) GO TO 520
- IF (IALTH .GT. 1) GO TO 690
- IF (L .EQ. LMAX) GO TO 690
- DO 490 I = 1,N
- 490 YH(I,LMAX) = ACOR(I)
- GO TO 690
- C-----------------------------------------------------------------------
- C THE ERROR TEST FAILED. KFLAG KEEPS TRACK OF MULTIPLE FAILURES.
- C RESTORE TN AND THE YH ARRAY TO THEIR PREVIOUS VALUES, AND PREPARE
- C TO TRY THE STEP AGAIN. COMPUTE THE OPTIMUM STEP SIZE FOR THIS OR
- C ONE LOWER ORDER. AFTER 2 OR MORE FAILURES, H IS FORCED TO DECREASE
- C BY A FACTOR OF 0.2 OR LESS.
- C-----------------------------------------------------------------------
- 500 KFLAG = KFLAG - 1
- TN = TOLD
- I1 = NQNYH + 1
- DO 515 JB = 1,NQ
- I1 = I1 - NYH
- DO 510 I = I1,NQNYH
- 510 YH1(I) = YH1(I) - YH1(I+NYH)
- 515 CONTINUE
- RMAX = 2.0E0
- IF (ABS(H) .LE. HMIN*1.00001E0) GO TO 660
- IF (KFLAG .LE. -3) GO TO 640
- IREDO = 2
- RHUP = 0.0E0
- GO TO 540
- C-----------------------------------------------------------------------
- C REGARDLESS OF THE SUCCESS OR FAILURE OF THE STEP, FACTORS
- C RHDN, RHSM, AND RHUP ARE COMPUTED, BY WHICH H COULD BE MULTIPLIED
- C AT ORDER NQ - 1, ORDER NQ, OR ORDER NQ + 1, RESPECTIVELY.
- C IN THE CASE OF FAILURE, RHUP = 0.0 TO AVOID AN ORDER INCREASE.
- C THE LARGEST OF THESE IS DETERMINED AND THE NEW ORDER CHOSEN
- C ACCORDINGLY. IF THE ORDER IS TO BE INCREASED, WE COMPUTE ONE
- C ADDITIONAL SCALED DERIVATIVE.
- C-----------------------------------------------------------------------
- 520 RHUP = 0.0E0
- IF (L .EQ. LMAX) GO TO 540
- DO 530 I = 1,N
- 530 SAVF(I) = ACOR(I) - YH(I,LMAX)
- DUP = VNWRMS (N, SAVF, EWT)/TESCO(3,NQ)
- EXUP = 1.0E0/(L+1)
- RHUP = 1.0E0/(1.4E0*DUP**EXUP + 0.0000014E0)
- 540 EXSM = 1.0E0/L
- RHSM = 1.0E0/(1.2E0*DSM**EXSM + 0.0000012E0)
- RHDN = 0.0E0
- IF (NQ .EQ. 1) GO TO 560
- DDN = VNWRMS (N, YH(1,L), EWT)/TESCO(1,NQ)
- EXDN = 1.0E0/NQ
- RHDN = 1.0E0/(1.3E0*DDN**EXDN + 0.0000013E0)
- 560 IF (RHSM .GE. RHUP) GO TO 570
- IF (RHUP .GT. RHDN) GO TO 590
- GO TO 580
- 570 IF (RHSM .LT. RHDN) GO TO 580
- NEWQ = NQ
- RH = RHSM
- GO TO 620
- 580 NEWQ = NQ - 1
- RH = RHDN
- IF (KFLAG .LT. 0 .AND. RH .GT. 1.0E0) RH = 1.0E0
- GO TO 620
- 590 NEWQ = L
- RH = RHUP
- IF (RH .LT. 1.1E0) GO TO 610
- R = EL(L)/L
- DO 600 I = 1,N
- 600 YH(I,NEWQ+1) = ACOR(I)*R
- GO TO 630
- 610 IALTH = 3
- GO TO 690
- 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1E0)) GO TO 610
- IF (KFLAG .LE. -2) RH = MIN(RH,0.2E0)
- C-----------------------------------------------------------------------
- C IF THERE IS A CHANGE OF ORDER, RESET NQ, L, AND THE COEFFICIENTS.
- C IN ANY CASE H IS RESET ACCORDING TO RH AND THE YH ARRAY IS RESCALED.
- C THEN EXIT FROM 680 IF THE STEP WAS OK, OR REDO THE STEP OTHERWISE.
- C-----------------------------------------------------------------------
- IF (NEWQ .EQ. NQ) GO TO 170
- 630 NQ = NEWQ
- L = NQ + 1
- IRET = 2
- GO TO 150
- C-----------------------------------------------------------------------
- C CONTROL REACHES THIS SECTION IF 3 OR MORE FAILURES HAVE OCCURRED.
- C IF 10 FAILURES HAVE OCCURRED, EXIT WITH KFLAG = -1.
- C IT IS ASSUMED THAT THE DERIVATIVES THAT HAVE ACCUMULATED IN THE
- C YH ARRAY HAVE ERRORS OF THE WRONG ORDER. HENCE THE FIRST
- C DERIVATIVE IS RECOMPUTED, AND THE ORDER IS SET TO 1. THEN
- C H IS REDUCED BY A FACTOR OF 10, AND THE STEP IS RETRIED,
- C UNTIL IT SUCCEEDS OR H REACHES HMIN.
- C-----------------------------------------------------------------------
- 640 IF (KFLAG .EQ. -10) GO TO 660
- RH = 0.1E0
- RH = MAX(HMIN/ABS(H),RH)
- H = H*RH
- DO 645 I = 1,N
- 645 Y(I) = YH(I,1)
- CALL F (TN, Y, SAVF, RPAR, IPAR)
- NFE = NFE + 1
- DO 650 I = 1,N
- 650 YH(I,2) = H*SAVF(I)
- IPUP = MITER
- IALTH = 5
- IF (NQ .EQ. 1) GO TO 200
- NQ = 1
- L = 2
- IRET = 3
- GO TO 150
- C-----------------------------------------------------------------------
- C ALL RETURNS ARE MADE THROUGH THIS SECTION. H IS SAVED IN HOLD
- C TO ALLOW THE CALLER TO CHANGE H ON THE NEXT STEP.
- C-----------------------------------------------------------------------
- 660 KFLAG = -1
- GO TO 700
- 670 KFLAG = -2
- GO TO 700
- 680 RMAX = 10.0E0
- 690 R = 1.0E0/TESCO(2,NQU)
- DO 695 I = 1,N
- 695 ACOR(I) = ACOR(I)*R
- 700 HOLD = H
- JSTART = 1
- RETURN
- C----------------------- END OF SUBROUTINE STOD -----------------------
- END
|