stpsv.f 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. *DECK STPSV
  2. SUBROUTINE STPSV (UPLO, TRANS, DIAG, N, AP, X, INCX)
  3. C***BEGIN PROLOGUE STPSV
  4. C***PURPOSE Solve one of the systems of equations.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE SINGLE PRECISION (STPSV-S, DTPSV-D, CTPSV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C STPSV solves one of the systems of equations
  16. C
  17. C A*x = b, or A'*x = b,
  18. C
  19. C where b and x are n element vectors and A is an n by n unit, or
  20. C non-unit, upper or lower triangular matrix, supplied in packed form.
  21. C
  22. C No test for singularity or near-singularity is included in this
  23. C routine. Such tests must be performed before calling this routine.
  24. C
  25. C Parameters
  26. C ==========
  27. C
  28. C UPLO - CHARACTER*1.
  29. C On entry, UPLO specifies whether the matrix is an upper or
  30. C lower triangular matrix as follows:
  31. C
  32. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  33. C
  34. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C TRANS - CHARACTER*1.
  39. C On entry, TRANS specifies the equations to be solved as
  40. C follows:
  41. C
  42. C TRANS = 'N' or 'n' A*x = b.
  43. C
  44. C TRANS = 'T' or 't' A'*x = b.
  45. C
  46. C TRANS = 'C' or 'c' A'*x = b.
  47. C
  48. C Unchanged on exit.
  49. C
  50. C DIAG - CHARACTER*1.
  51. C On entry, DIAG specifies whether or not A is unit
  52. C triangular as follows:
  53. C
  54. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  55. C
  56. C DIAG = 'N' or 'n' A is not assumed to be unit
  57. C triangular.
  58. C
  59. C Unchanged on exit.
  60. C
  61. C N - INTEGER.
  62. C On entry, N specifies the order of the matrix A.
  63. C N must be at least zero.
  64. C Unchanged on exit.
  65. C
  66. C AP - REAL array of DIMENSION at least
  67. C ( ( n*( n + 1))/2).
  68. C Before entry with UPLO = 'U' or 'u', the array AP must
  69. C contain the upper triangular matrix packed sequentially,
  70. C column by column, so that AP( 1 ) contains a( 1, 1 ),
  71. C AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
  72. C respectively, and so on.
  73. C Before entry with UPLO = 'L' or 'l', the array AP must
  74. C contain the lower triangular matrix packed sequentially,
  75. C column by column, so that AP( 1 ) contains a( 1, 1 ),
  76. C AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
  77. C respectively, and so on.
  78. C Note that when DIAG = 'U' or 'u', the diagonal elements of
  79. C A are not referenced, but are assumed to be unity.
  80. C Unchanged on exit.
  81. C
  82. C X - REAL array of dimension at least
  83. C ( 1 + ( n - 1 )*abs( INCX ) ).
  84. C Before entry, the incremented array X must contain the n
  85. C element right-hand side vector b. On exit, X is overwritten
  86. C with the solution vector x.
  87. C
  88. C INCX - INTEGER.
  89. C On entry, INCX specifies the increment for the elements of
  90. C X. INCX must not be zero.
  91. C Unchanged on exit.
  92. C
  93. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  94. C Hanson, R. J. An extended set of Fortran basic linear
  95. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  96. C pp. 1-17, March 1988.
  97. C***ROUTINES CALLED LSAME, XERBLA
  98. C***REVISION HISTORY (YYMMDD)
  99. C 861022 DATE WRITTEN
  100. C 910605 Modified to meet SLATEC prologue standards. Only comment
  101. C lines were modified. (BKS)
  102. C***END PROLOGUE STPSV
  103. C .. Scalar Arguments ..
  104. INTEGER INCX, N
  105. CHARACTER*1 DIAG, TRANS, UPLO
  106. C .. Array Arguments ..
  107. REAL AP( * ), X( * )
  108. C .. Parameters ..
  109. REAL ZERO
  110. PARAMETER ( ZERO = 0.0E+0 )
  111. C .. Local Scalars ..
  112. REAL TEMP
  113. INTEGER I, INFO, IX, J, JX, K, KK, KX
  114. LOGICAL NOUNIT
  115. C .. External Functions ..
  116. LOGICAL LSAME
  117. EXTERNAL LSAME
  118. C .. External Subroutines ..
  119. EXTERNAL XERBLA
  120. C***FIRST EXECUTABLE STATEMENT STPSV
  121. C
  122. C Test the input parameters.
  123. C
  124. INFO = 0
  125. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  126. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  127. INFO = 1
  128. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  129. $ .NOT.LSAME( TRANS, 'T' ).AND.
  130. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  131. INFO = 2
  132. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  133. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  134. INFO = 3
  135. ELSE IF( N.LT.0 )THEN
  136. INFO = 4
  137. ELSE IF( INCX.EQ.0 )THEN
  138. INFO = 7
  139. END IF
  140. IF( INFO.NE.0 )THEN
  141. CALL XERBLA( 'STPSV ', INFO )
  142. RETURN
  143. END IF
  144. C
  145. C Quick return if possible.
  146. C
  147. IF( N.EQ.0 )
  148. $ RETURN
  149. C
  150. NOUNIT = LSAME( DIAG, 'N' )
  151. C
  152. C Set up the start point in X if the increment is not unity. This
  153. C will be ( N - 1 )*INCX too small for descending loops.
  154. C
  155. IF( INCX.LE.0 )THEN
  156. KX = 1 - ( N - 1 )*INCX
  157. ELSE IF( INCX.NE.1 )THEN
  158. KX = 1
  159. END IF
  160. C
  161. C Start the operations. In this version the elements of AP are
  162. C accessed sequentially with one pass through AP.
  163. C
  164. IF( LSAME( TRANS, 'N' ) )THEN
  165. C
  166. C Form x := inv( A )*x.
  167. C
  168. IF( LSAME( UPLO, 'U' ) )THEN
  169. KK = ( N*( N + 1 ) )/2
  170. IF( INCX.EQ.1 )THEN
  171. DO 20, J = N, 1, -1
  172. IF( X( J ).NE.ZERO )THEN
  173. IF( NOUNIT )
  174. $ X( J ) = X( J )/AP( KK )
  175. TEMP = X( J )
  176. K = KK - 1
  177. DO 10, I = J - 1, 1, -1
  178. X( I ) = X( I ) - TEMP*AP( K )
  179. K = K - 1
  180. 10 CONTINUE
  181. END IF
  182. KK = KK - J
  183. 20 CONTINUE
  184. ELSE
  185. JX = KX + ( N - 1 )*INCX
  186. DO 40, J = N, 1, -1
  187. IF( X( JX ).NE.ZERO )THEN
  188. IF( NOUNIT )
  189. $ X( JX ) = X( JX )/AP( KK )
  190. TEMP = X( JX )
  191. IX = JX
  192. DO 30, K = KK - 1, KK - J + 1, -1
  193. IX = IX - INCX
  194. X( IX ) = X( IX ) - TEMP*AP( K )
  195. 30 CONTINUE
  196. END IF
  197. JX = JX - INCX
  198. KK = KK - J
  199. 40 CONTINUE
  200. END IF
  201. ELSE
  202. KK = 1
  203. IF( INCX.EQ.1 )THEN
  204. DO 60, J = 1, N
  205. IF( X( J ).NE.ZERO )THEN
  206. IF( NOUNIT )
  207. $ X( J ) = X( J )/AP( KK )
  208. TEMP = X( J )
  209. K = KK + 1
  210. DO 50, I = J + 1, N
  211. X( I ) = X( I ) - TEMP*AP( K )
  212. K = K + 1
  213. 50 CONTINUE
  214. END IF
  215. KK = KK + ( N - J + 1 )
  216. 60 CONTINUE
  217. ELSE
  218. JX = KX
  219. DO 80, J = 1, N
  220. IF( X( JX ).NE.ZERO )THEN
  221. IF( NOUNIT )
  222. $ X( JX ) = X( JX )/AP( KK )
  223. TEMP = X( JX )
  224. IX = JX
  225. DO 70, K = KK + 1, KK + N - J
  226. IX = IX + INCX
  227. X( IX ) = X( IX ) - TEMP*AP( K )
  228. 70 CONTINUE
  229. END IF
  230. JX = JX + INCX
  231. KK = KK + ( N - J + 1 )
  232. 80 CONTINUE
  233. END IF
  234. END IF
  235. ELSE
  236. C
  237. C Form x := inv( A' )*x.
  238. C
  239. IF( LSAME( UPLO, 'U' ) )THEN
  240. KK = 1
  241. IF( INCX.EQ.1 )THEN
  242. DO 100, J = 1, N
  243. TEMP = X( J )
  244. K = KK
  245. DO 90, I = 1, J - 1
  246. TEMP = TEMP - AP( K )*X( I )
  247. K = K + 1
  248. 90 CONTINUE
  249. IF( NOUNIT )
  250. $ TEMP = TEMP/AP( KK + J - 1 )
  251. X( J ) = TEMP
  252. KK = KK + J
  253. 100 CONTINUE
  254. ELSE
  255. JX = KX
  256. DO 120, J = 1, N
  257. TEMP = X( JX )
  258. IX = KX
  259. DO 110, K = KK, KK + J - 2
  260. TEMP = TEMP - AP( K )*X( IX )
  261. IX = IX + INCX
  262. 110 CONTINUE
  263. IF( NOUNIT )
  264. $ TEMP = TEMP/AP( KK + J - 1 )
  265. X( JX ) = TEMP
  266. JX = JX + INCX
  267. KK = KK + J
  268. 120 CONTINUE
  269. END IF
  270. ELSE
  271. KK = ( N*( N + 1 ) )/2
  272. IF( INCX.EQ.1 )THEN
  273. DO 140, J = N, 1, -1
  274. TEMP = X( J )
  275. K = KK
  276. DO 130, I = N, J + 1, -1
  277. TEMP = TEMP - AP( K )*X( I )
  278. K = K - 1
  279. 130 CONTINUE
  280. IF( NOUNIT )
  281. $ TEMP = TEMP/AP( KK - N + J )
  282. X( J ) = TEMP
  283. KK = KK - ( N - J + 1 )
  284. 140 CONTINUE
  285. ELSE
  286. KX = KX + ( N - 1 )*INCX
  287. JX = KX
  288. DO 160, J = N, 1, -1
  289. TEMP = X( JX )
  290. IX = KX
  291. DO 150, K = KK, KK - ( N - ( J + 1 ) ), -1
  292. TEMP = TEMP - AP( K )*X( IX )
  293. IX = IX - INCX
  294. 150 CONTINUE
  295. IF( NOUNIT )
  296. $ TEMP = TEMP/AP( KK - N + J )
  297. X( JX ) = TEMP
  298. JX = JX - INCX
  299. KK = KK - (N - J + 1 )
  300. 160 CONTINUE
  301. END IF
  302. END IF
  303. END IF
  304. C
  305. RETURN
  306. C
  307. C End of STPSV .
  308. C
  309. END