123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- *DECK STRSL
- SUBROUTINE STRSL (T, LDT, N, B, JOB, INFO)
- C***BEGIN PROLOGUE STRSL
- C***PURPOSE Solve a system of the form T*X=B or TRANS(T)*X=B, where
- C T is a triangular matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2A3
- C***TYPE SINGLE PRECISION (STRSL-S, DTRSL-D, CTRSL-C)
- C***KEYWORDS LINEAR ALGEBRA, LINPACK, TRIANGULAR LINEAR SYSTEM,
- C TRIANGULAR MATRIX
- C***AUTHOR Stewart, G. W., (U. of Maryland)
- C***DESCRIPTION
- C
- C STRSL solves systems of the form
- C
- C T * X = B
- C or
- C TRANS(T) * X = B
- C
- C where T is a triangular matrix of order N. Here TRANS(T)
- C denotes the transpose of the matrix T.
- C
- C On Entry
- C
- C T REAL(LDT,N)
- C T contains the matrix of the system. The zero
- C elements of the matrix are not referenced, and
- C the corresponding elements of the array can be
- C used to store other information.
- C
- C LDT INTEGER
- C LDT is the leading dimension of the array T.
- C
- C N INTEGER
- C N is the order of the system.
- C
- C B REAL(N).
- C B contains the right hand side of the system.
- C
- C JOB INTEGER
- C JOB specifies what kind of system is to be solved.
- C If JOB is
- C
- C 00 solve T*X=B, T lower triangular,
- C 01 solve T*X=B, T upper triangular,
- C 10 solve TRANS(T)*X=B, T lower triangular,
- C 11 solve TRANS(T)*X=B, T upper triangular.
- C
- C On Return
- C
- C B B contains the solution, if INFO .EQ. 0.
- C Otherwise B is unaltered.
- C
- C INFO INTEGER
- C INFO contains zero if the system is nonsingular.
- C Otherwise INFO contains the index of
- C the first zero diagonal element of T.
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED SAXPY, SDOT
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE STRSL
- INTEGER LDT,N,JOB,INFO
- REAL T(LDT,*),B(*)
- C
- C
- REAL SDOT,TEMP
- INTEGER CASE,J,JJ
- C***FIRST EXECUTABLE STATEMENT STRSL
- C
- C CHECK FOR ZERO DIAGONAL ELEMENTS.
- C
- DO 10 INFO = 1, N
- IF (T(INFO,INFO) .EQ. 0.0E0) GO TO 150
- 10 CONTINUE
- INFO = 0
- C
- C DETERMINE THE TASK AND GO TO IT.
- C
- CASE = 1
- IF (MOD(JOB,10) .NE. 0) CASE = 2
- IF (MOD(JOB,100)/10 .NE. 0) CASE = CASE + 2
- GO TO (20,50,80,110), CASE
- C
- C SOLVE T*X=B FOR T LOWER TRIANGULAR
- C
- 20 CONTINUE
- B(1) = B(1)/T(1,1)
- IF (N .LT. 2) GO TO 40
- DO 30 J = 2, N
- TEMP = -B(J-1)
- CALL SAXPY(N-J+1,TEMP,T(J,J-1),1,B(J),1)
- B(J) = B(J)/T(J,J)
- 30 CONTINUE
- 40 CONTINUE
- GO TO 140
- C
- C SOLVE T*X=B FOR T UPPER TRIANGULAR.
- C
- 50 CONTINUE
- B(N) = B(N)/T(N,N)
- IF (N .LT. 2) GO TO 70
- DO 60 JJ = 2, N
- J = N - JJ + 1
- TEMP = -B(J+1)
- CALL SAXPY(J,TEMP,T(1,J+1),1,B(1),1)
- B(J) = B(J)/T(J,J)
- 60 CONTINUE
- 70 CONTINUE
- GO TO 140
- C
- C SOLVE TRANS(T)*X=B FOR T LOWER TRIANGULAR.
- C
- 80 CONTINUE
- B(N) = B(N)/T(N,N)
- IF (N .LT. 2) GO TO 100
- DO 90 JJ = 2, N
- J = N - JJ + 1
- B(J) = B(J) - SDOT(JJ-1,T(J+1,J),1,B(J+1),1)
- B(J) = B(J)/T(J,J)
- 90 CONTINUE
- 100 CONTINUE
- GO TO 140
- C
- C SOLVE TRANS(T)*X=B FOR T UPPER TRIANGULAR.
- C
- 110 CONTINUE
- B(1) = B(1)/T(1,1)
- IF (N .LT. 2) GO TO 130
- DO 120 J = 2, N
- B(J) = B(J) - SDOT(J-1,T(1,J),1,B(1),1)
- B(J) = B(J)/T(J,J)
- 120 CONTINUE
- 130 CONTINUE
- 140 CONTINUE
- 150 CONTINUE
- RETURN
- END
|