strsm.f 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. *DECK STRSM
  2. SUBROUTINE STRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
  3. $ B, LDB)
  4. C***BEGIN PROLOGUE STRSM
  5. C***PURPOSE Solve a real triangular system of equations with multiple
  6. C right-hand sides.
  7. C***LIBRARY SLATEC (BLAS)
  8. C***CATEGORY D1B6
  9. C***TYPE SINGLE PRECISION (STRSM-S, DTRSM-D, CTRSM-C)
  10. C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
  11. C***AUTHOR Dongarra, J., (ANL)
  12. C Duff, I., (AERE)
  13. C Du Croz, J., (NAG)
  14. C Hammarling, S. (NAG)
  15. C***DESCRIPTION
  16. C
  17. C STRSM solves one of the matrix equations
  18. C
  19. C op( A )*X = alpha*B, or X*op( A ) = alpha*B,
  20. C
  21. C where alpha is a scalar, X and B are m by n matrices, A is a unit, or
  22. C non-unit, upper or lower triangular matrix and op( A ) is one of
  23. C
  24. C op( A ) = A or op( A ) = A'.
  25. C
  26. C The matrix X is overwritten on B.
  27. C
  28. C Parameters
  29. C ==========
  30. C
  31. C SIDE - CHARACTER*1.
  32. C On entry, SIDE specifies whether op( A ) appears on the left
  33. C or right of X as follows:
  34. C
  35. C SIDE = 'L' or 'l' op( A )*X = alpha*B.
  36. C
  37. C SIDE = 'R' or 'r' X*op( A ) = alpha*B.
  38. C
  39. C Unchanged on exit.
  40. C
  41. C UPLO - CHARACTER*1.
  42. C On entry, UPLO specifies whether the matrix A is an upper or
  43. C lower triangular matrix as follows:
  44. C
  45. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  46. C
  47. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  48. C
  49. C Unchanged on exit.
  50. C
  51. C TRANSA - CHARACTER*1.
  52. C On entry, TRANSA specifies the form of op( A ) to be used in
  53. C the matrix multiplication as follows:
  54. C
  55. C TRANSA = 'N' or 'n' op( A ) = A.
  56. C
  57. C TRANSA = 'T' or 't' op( A ) = A'.
  58. C
  59. C TRANSA = 'C' or 'c' op( A ) = A'.
  60. C
  61. C Unchanged on exit.
  62. C
  63. C DIAG - CHARACTER*1.
  64. C On entry, DIAG specifies whether or not A is unit triangular
  65. C as follows:
  66. C
  67. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  68. C
  69. C DIAG = 'N' or 'n' A is not assumed to be unit
  70. C triangular.
  71. C
  72. C Unchanged on exit.
  73. C
  74. C M - INTEGER.
  75. C On entry, M specifies the number of rows of B. M must be at
  76. C least zero.
  77. C Unchanged on exit.
  78. C
  79. C N - INTEGER.
  80. C On entry, N specifies the number of columns of B. N must be
  81. C at least zero.
  82. C Unchanged on exit.
  83. C
  84. C ALPHA - REAL .
  85. C On entry, ALPHA specifies the scalar alpha. When alpha is
  86. C zero then A is not referenced and B need not be set before
  87. C entry.
  88. C Unchanged on exit.
  89. C
  90. C A - REAL array of DIMENSION ( LDA, k ), where k is m
  91. C when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  92. C Before entry with UPLO = 'U' or 'u', the leading k by k
  93. C upper triangular part of the array A must contain the upper
  94. C triangular matrix and the strictly lower triangular part of
  95. C A is not referenced.
  96. C Before entry with UPLO = 'L' or 'l', the leading k by k
  97. C lower triangular part of the array A must contain the lower
  98. C triangular matrix and the strictly upper triangular part of
  99. C A is not referenced.
  100. C Note that when DIAG = 'U' or 'u', the diagonal elements of
  101. C A are not referenced either, but are assumed to be unity.
  102. C Unchanged on exit.
  103. C
  104. C LDA - INTEGER.
  105. C On entry, LDA specifies the first dimension of A as declared
  106. C in the calling (sub) program. When SIDE = 'L' or 'l' then
  107. C LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  108. C then LDA must be at least max( 1, n ).
  109. C Unchanged on exit.
  110. C
  111. C B - REAL array of DIMENSION ( LDB, n ).
  112. C Before entry, the leading m by n part of the array B must
  113. C contain the right-hand side matrix B, and on exit is
  114. C overwritten by the solution matrix X.
  115. C
  116. C LDB - INTEGER.
  117. C On entry, LDB specifies the first dimension of B as declared
  118. C in the calling (sub) program. LDB must be at least
  119. C max( 1, m ).
  120. C Unchanged on exit.
  121. C
  122. C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
  123. C A set of level 3 basic linear algebra subprograms.
  124. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
  125. C***ROUTINES CALLED LSAME, XERBLA
  126. C***REVISION HISTORY (YYMMDD)
  127. C 890208 DATE WRITTEN
  128. C 910605 Modified to meet SLATEC prologue standards. Only comment
  129. C lines were modified. (BKS)
  130. C***END PROLOGUE STRSM
  131. C .. Scalar Arguments ..
  132. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
  133. INTEGER M, N, LDA, LDB
  134. REAL ALPHA
  135. C .. Array Arguments ..
  136. REAL A( LDA, * ), B( LDB, * )
  137. C
  138. C .. External Functions ..
  139. LOGICAL LSAME
  140. EXTERNAL LSAME
  141. C .. External Subroutines ..
  142. EXTERNAL XERBLA
  143. C .. Intrinsic Functions ..
  144. INTRINSIC MAX
  145. C .. Local Scalars ..
  146. LOGICAL LSIDE, NOUNIT, UPPER
  147. INTEGER I, INFO, J, K, NROWA
  148. REAL TEMP
  149. C .. Parameters ..
  150. REAL ONE , ZERO
  151. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  152. C***FIRST EXECUTABLE STATEMENT STRSM
  153. C
  154. C Test the input parameters.
  155. C
  156. LSIDE = LSAME( SIDE , 'L' )
  157. IF( LSIDE )THEN
  158. NROWA = M
  159. ELSE
  160. NROWA = N
  161. END IF
  162. NOUNIT = LSAME( DIAG , 'N' )
  163. UPPER = LSAME( UPLO , 'U' )
  164. C
  165. INFO = 0
  166. IF( ( .NOT.LSIDE ).AND.
  167. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
  168. INFO = 1
  169. ELSE IF( ( .NOT.UPPER ).AND.
  170. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  171. INFO = 2
  172. ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
  173. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
  174. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
  175. INFO = 3
  176. ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
  177. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
  178. INFO = 4
  179. ELSE IF( M .LT.0 )THEN
  180. INFO = 5
  181. ELSE IF( N .LT.0 )THEN
  182. INFO = 6
  183. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  184. INFO = 9
  185. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  186. INFO = 11
  187. END IF
  188. IF( INFO.NE.0 )THEN
  189. CALL XERBLA( 'STRSM ', INFO )
  190. RETURN
  191. END IF
  192. C
  193. C Quick return if possible.
  194. C
  195. IF( N.EQ.0 )
  196. $ RETURN
  197. C
  198. C And when alpha.eq.zero.
  199. C
  200. IF( ALPHA.EQ.ZERO )THEN
  201. DO 20, J = 1, N
  202. DO 10, I = 1, M
  203. B( I, J ) = ZERO
  204. 10 CONTINUE
  205. 20 CONTINUE
  206. RETURN
  207. END IF
  208. C
  209. C Start the operations.
  210. C
  211. IF( LSIDE )THEN
  212. IF( LSAME( TRANSA, 'N' ) )THEN
  213. C
  214. C Form B := alpha*inv( A )*B.
  215. C
  216. IF( UPPER )THEN
  217. DO 60, J = 1, N
  218. IF( ALPHA.NE.ONE )THEN
  219. DO 30, I = 1, M
  220. B( I, J ) = ALPHA*B( I, J )
  221. 30 CONTINUE
  222. END IF
  223. DO 50, K = M, 1, -1
  224. IF( B( K, J ).NE.ZERO )THEN
  225. IF( NOUNIT )
  226. $ B( K, J ) = B( K, J )/A( K, K )
  227. DO 40, I = 1, K - 1
  228. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  229. 40 CONTINUE
  230. END IF
  231. 50 CONTINUE
  232. 60 CONTINUE
  233. ELSE
  234. DO 100, J = 1, N
  235. IF( ALPHA.NE.ONE )THEN
  236. DO 70, I = 1, M
  237. B( I, J ) = ALPHA*B( I, J )
  238. 70 CONTINUE
  239. END IF
  240. DO 90 K = 1, M
  241. IF( B( K, J ).NE.ZERO )THEN
  242. IF( NOUNIT )
  243. $ B( K, J ) = B( K, J )/A( K, K )
  244. DO 80, I = K + 1, M
  245. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  246. 80 CONTINUE
  247. END IF
  248. 90 CONTINUE
  249. 100 CONTINUE
  250. END IF
  251. ELSE
  252. C
  253. C Form B := alpha*inv( A' )*B.
  254. C
  255. IF( UPPER )THEN
  256. DO 130, J = 1, N
  257. DO 120, I = 1, M
  258. TEMP = ALPHA*B( I, J )
  259. DO 110, K = 1, I - 1
  260. TEMP = TEMP - A( K, I )*B( K, J )
  261. 110 CONTINUE
  262. IF( NOUNIT )
  263. $ TEMP = TEMP/A( I, I )
  264. B( I, J ) = TEMP
  265. 120 CONTINUE
  266. 130 CONTINUE
  267. ELSE
  268. DO 160, J = 1, N
  269. DO 150, I = M, 1, -1
  270. TEMP = ALPHA*B( I, J )
  271. DO 140, K = I + 1, M
  272. TEMP = TEMP - A( K, I )*B( K, J )
  273. 140 CONTINUE
  274. IF( NOUNIT )
  275. $ TEMP = TEMP/A( I, I )
  276. B( I, J ) = TEMP
  277. 150 CONTINUE
  278. 160 CONTINUE
  279. END IF
  280. END IF
  281. ELSE
  282. IF( LSAME( TRANSA, 'N' ) )THEN
  283. C
  284. C Form B := alpha*B*inv( A ).
  285. C
  286. IF( UPPER )THEN
  287. DO 210, J = 1, N
  288. IF( ALPHA.NE.ONE )THEN
  289. DO 170, I = 1, M
  290. B( I, J ) = ALPHA*B( I, J )
  291. 170 CONTINUE
  292. END IF
  293. DO 190, K = 1, J - 1
  294. IF( A( K, J ).NE.ZERO )THEN
  295. DO 180, I = 1, M
  296. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  297. 180 CONTINUE
  298. END IF
  299. 190 CONTINUE
  300. IF( NOUNIT )THEN
  301. TEMP = ONE/A( J, J )
  302. DO 200, I = 1, M
  303. B( I, J ) = TEMP*B( I, J )
  304. 200 CONTINUE
  305. END IF
  306. 210 CONTINUE
  307. ELSE
  308. DO 260, J = N, 1, -1
  309. IF( ALPHA.NE.ONE )THEN
  310. DO 220, I = 1, M
  311. B( I, J ) = ALPHA*B( I, J )
  312. 220 CONTINUE
  313. END IF
  314. DO 240, K = J + 1, N
  315. IF( A( K, J ).NE.ZERO )THEN
  316. DO 230, I = 1, M
  317. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  318. 230 CONTINUE
  319. END IF
  320. 240 CONTINUE
  321. IF( NOUNIT )THEN
  322. TEMP = ONE/A( J, J )
  323. DO 250, I = 1, M
  324. B( I, J ) = TEMP*B( I, J )
  325. 250 CONTINUE
  326. END IF
  327. 260 CONTINUE
  328. END IF
  329. ELSE
  330. C
  331. C Form B := alpha*B*inv( A' ).
  332. C
  333. IF( UPPER )THEN
  334. DO 310, K = N, 1, -1
  335. IF( NOUNIT )THEN
  336. TEMP = ONE/A( K, K )
  337. DO 270, I = 1, M
  338. B( I, K ) = TEMP*B( I, K )
  339. 270 CONTINUE
  340. END IF
  341. DO 290, J = 1, K - 1
  342. IF( A( J, K ).NE.ZERO )THEN
  343. TEMP = A( J, K )
  344. DO 280, I = 1, M
  345. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  346. 280 CONTINUE
  347. END IF
  348. 290 CONTINUE
  349. IF( ALPHA.NE.ONE )THEN
  350. DO 300, I = 1, M
  351. B( I, K ) = ALPHA*B( I, K )
  352. 300 CONTINUE
  353. END IF
  354. 310 CONTINUE
  355. ELSE
  356. DO 360, K = 1, N
  357. IF( NOUNIT )THEN
  358. TEMP = ONE/A( K, K )
  359. DO 320, I = 1, M
  360. B( I, K ) = TEMP*B( I, K )
  361. 320 CONTINUE
  362. END IF
  363. DO 340, J = K + 1, N
  364. IF( A( J, K ).NE.ZERO )THEN
  365. TEMP = A( J, K )
  366. DO 330, I = 1, M
  367. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  368. 330 CONTINUE
  369. END IF
  370. 340 CONTINUE
  371. IF( ALPHA.NE.ONE )THEN
  372. DO 350, I = 1, M
  373. B( I, K ) = ALPHA*B( I, K )
  374. 350 CONTINUE
  375. END IF
  376. 360 CONTINUE
  377. END IF
  378. END IF
  379. END IF
  380. C
  381. RETURN
  382. C
  383. C End of STRSM .
  384. C
  385. END