strsv.f 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. *DECK STRSV
  2. SUBROUTINE STRSV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
  3. C***BEGIN PROLOGUE STRSV
  4. C***PURPOSE Solve a real triangular system of linear equations.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE SINGLE PRECISION (STRSV-S, DTRSV-D, CTRSV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C STRSV solves one of the systems of equations
  16. C
  17. C A*x = b, or A'*x = b,
  18. C
  19. C where b and x are n element vectors and A is an n by n unit, or
  20. C non-unit, upper or lower triangular matrix.
  21. C
  22. C No test for singularity or near-singularity is included in this
  23. C routine. Such tests must be performed before calling this routine.
  24. C
  25. C Parameters
  26. C ==========
  27. C
  28. C UPLO - CHARACTER*1.
  29. C On entry, UPLO specifies whether the matrix is an upper or
  30. C lower triangular matrix as follows:
  31. C
  32. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  33. C
  34. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C TRANS - CHARACTER*1.
  39. C On entry, TRANS specifies the equations to be solved as
  40. C follows:
  41. C
  42. C TRANS = 'N' or 'n' A*x = b.
  43. C
  44. C TRANS = 'T' or 't' A'*x = b.
  45. C
  46. C TRANS = 'C' or 'c' A'*x = b.
  47. C
  48. C Unchanged on exit.
  49. C
  50. C DIAG - CHARACTER*1.
  51. C On entry, DIAG specifies whether or not A is unit
  52. C triangular as follows:
  53. C
  54. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  55. C
  56. C DIAG = 'N' or 'n' A is not assumed to be unit
  57. C triangular.
  58. C
  59. C Unchanged on exit.
  60. C
  61. C N - INTEGER.
  62. C On entry, N specifies the order of the matrix A.
  63. C N must be at least zero.
  64. C Unchanged on exit.
  65. C
  66. C A - REAL array of DIMENSION ( LDA, n).
  67. C Before entry with UPLO = 'U' or 'u', the leading n by n
  68. C upper triangular part of the array A must contain the upper
  69. C triangular matrix and the strictly lower triangular part of
  70. C A is not referenced.
  71. C Before entry with UPLO = 'L' or 'l', the leading n by n
  72. C lower triangular part of the array A must contain the lower
  73. C triangular matrix and the strictly upper triangular part of
  74. C A is not referenced.
  75. C Note that when DIAG = 'U' or 'u', the diagonal elements of
  76. C A are not referenced either, but are assumed to be unity.
  77. C Unchanged on exit.
  78. C
  79. C LDA - INTEGER.
  80. C On entry, LDA specifies the first dimension of A as declared
  81. C in the calling (sub) program. LDA must be at least
  82. C max( 1, n ).
  83. C Unchanged on exit.
  84. C
  85. C X - REAL array of dimension at least
  86. C ( 1 + ( n - 1 )*abs( INCX ) ).
  87. C Before entry, the incremented array X must contain the n
  88. C element right-hand side vector b. On exit, X is overwritten
  89. C with the solution vector x.
  90. C
  91. C INCX - INTEGER.
  92. C On entry, INCX specifies the increment for the elements of
  93. C X. INCX must not be zero.
  94. C Unchanged on exit.
  95. C
  96. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  97. C Hanson, R. J. An extended set of Fortran basic linear
  98. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  99. C pp. 1-17, March 1988.
  100. C***ROUTINES CALLED LSAME, XERBLA
  101. C***REVISION HISTORY (YYMMDD)
  102. C 861022 DATE WRITTEN
  103. C 910605 Modified to meet SLATEC prologue standards. Only comment
  104. C lines were modified. (BKS)
  105. C***END PROLOGUE STRSV
  106. C .. Scalar Arguments ..
  107. INTEGER INCX, LDA, N
  108. CHARACTER*1 DIAG, TRANS, UPLO
  109. C .. Array Arguments ..
  110. REAL A( LDA, * ), X( * )
  111. C .. Parameters ..
  112. REAL ZERO
  113. PARAMETER ( ZERO = 0.0E+0 )
  114. C .. Local Scalars ..
  115. REAL TEMP
  116. INTEGER I, INFO, IX, J, JX, KX
  117. LOGICAL NOUNIT
  118. C .. External Functions ..
  119. LOGICAL LSAME
  120. EXTERNAL LSAME
  121. C .. External Subroutines ..
  122. EXTERNAL XERBLA
  123. C .. Intrinsic Functions ..
  124. INTRINSIC MAX
  125. C***FIRST EXECUTABLE STATEMENT STRSV
  126. C
  127. C Test the input parameters.
  128. C
  129. INFO = 0
  130. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  131. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  132. INFO = 1
  133. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  134. $ .NOT.LSAME( TRANS, 'T' ).AND.
  135. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  136. INFO = 2
  137. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  138. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  139. INFO = 3
  140. ELSE IF( N.LT.0 )THEN
  141. INFO = 4
  142. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  143. INFO = 6
  144. ELSE IF( INCX.EQ.0 )THEN
  145. INFO = 8
  146. END IF
  147. IF( INFO.NE.0 )THEN
  148. CALL XERBLA( 'STRSV ', INFO )
  149. RETURN
  150. END IF
  151. C
  152. C Quick return if possible.
  153. C
  154. IF( N.EQ.0 )
  155. $ RETURN
  156. C
  157. NOUNIT = LSAME( DIAG, 'N' )
  158. C
  159. C Set up the start point in X if the increment is not unity. This
  160. C will be ( N - 1 )*INCX too small for descending loops.
  161. C
  162. IF( INCX.LE.0 )THEN
  163. KX = 1 - ( N - 1 )*INCX
  164. ELSE IF( INCX.NE.1 )THEN
  165. KX = 1
  166. END IF
  167. C
  168. C Start the operations. In this version the elements of A are
  169. C accessed sequentially with one pass through A.
  170. C
  171. IF( LSAME( TRANS, 'N' ) )THEN
  172. C
  173. C Form x := inv( A )*x.
  174. C
  175. IF( LSAME( UPLO, 'U' ) )THEN
  176. IF( INCX.EQ.1 )THEN
  177. DO 20, J = N, 1, -1
  178. IF( X( J ).NE.ZERO )THEN
  179. IF( NOUNIT )
  180. $ X( J ) = X( J )/A( J, J )
  181. TEMP = X( J )
  182. DO 10, I = J - 1, 1, -1
  183. X( I ) = X( I ) - TEMP*A( I, J )
  184. 10 CONTINUE
  185. END IF
  186. 20 CONTINUE
  187. ELSE
  188. JX = KX + ( N - 1 )*INCX
  189. DO 40, J = N, 1, -1
  190. IF( X( JX ).NE.ZERO )THEN
  191. IF( NOUNIT )
  192. $ X( JX ) = X( JX )/A( J, J )
  193. TEMP = X( JX )
  194. IX = JX
  195. DO 30, I = J - 1, 1, -1
  196. IX = IX - INCX
  197. X( IX ) = X( IX ) - TEMP*A( I, J )
  198. 30 CONTINUE
  199. END IF
  200. JX = JX - INCX
  201. 40 CONTINUE
  202. END IF
  203. ELSE
  204. IF( INCX.EQ.1 )THEN
  205. DO 60, J = 1, N
  206. IF( X( J ).NE.ZERO )THEN
  207. IF( NOUNIT )
  208. $ X( J ) = X( J )/A( J, J )
  209. TEMP = X( J )
  210. DO 50, I = J + 1, N
  211. X( I ) = X( I ) - TEMP*A( I, J )
  212. 50 CONTINUE
  213. END IF
  214. 60 CONTINUE
  215. ELSE
  216. JX = KX
  217. DO 80, J = 1, N
  218. IF( X( JX ).NE.ZERO )THEN
  219. IF( NOUNIT )
  220. $ X( JX ) = X( JX )/A( J, J )
  221. TEMP = X( JX )
  222. IX = JX
  223. DO 70, I = J + 1, N
  224. IX = IX + INCX
  225. X( IX ) = X( IX ) - TEMP*A( I, J )
  226. 70 CONTINUE
  227. END IF
  228. JX = JX + INCX
  229. 80 CONTINUE
  230. END IF
  231. END IF
  232. ELSE
  233. C
  234. C Form x := inv( A' )*x.
  235. C
  236. IF( LSAME( UPLO, 'U' ) )THEN
  237. IF( INCX.EQ.1 )THEN
  238. DO 100, J = 1, N
  239. TEMP = X( J )
  240. DO 90, I = 1, J - 1
  241. TEMP = TEMP - A( I, J )*X( I )
  242. 90 CONTINUE
  243. IF( NOUNIT )
  244. $ TEMP = TEMP/A( J, J )
  245. X( J ) = TEMP
  246. 100 CONTINUE
  247. ELSE
  248. JX = KX
  249. DO 120, J = 1, N
  250. TEMP = X( JX )
  251. IX = KX
  252. DO 110, I = 1, J - 1
  253. TEMP = TEMP - A( I, J )*X( IX )
  254. IX = IX + INCX
  255. 110 CONTINUE
  256. IF( NOUNIT )
  257. $ TEMP = TEMP/A( J, J )
  258. X( JX ) = TEMP
  259. JX = JX + INCX
  260. 120 CONTINUE
  261. END IF
  262. ELSE
  263. IF( INCX.EQ.1 )THEN
  264. DO 140, J = N, 1, -1
  265. TEMP = X( J )
  266. DO 130, I = N, J + 1, -1
  267. TEMP = TEMP - A( I, J )*X( I )
  268. 130 CONTINUE
  269. IF( NOUNIT )
  270. $ TEMP = TEMP/A( J, J )
  271. X( J ) = TEMP
  272. 140 CONTINUE
  273. ELSE
  274. KX = KX + ( N - 1 )*INCX
  275. JX = KX
  276. DO 160, J = N, 1, -1
  277. TEMP = X( JX )
  278. IX = KX
  279. DO 150, I = N, J + 1, -1
  280. TEMP = TEMP - A( I, J )*X( IX )
  281. IX = IX - INCX
  282. 150 CONTINUE
  283. IF( NOUNIT )
  284. $ TEMP = TEMP/A( J, J )
  285. X( JX ) = TEMP
  286. JX = JX - INCX
  287. 160 CONTINUE
  288. END IF
  289. END IF
  290. END IF
  291. C
  292. RETURN
  293. C
  294. C End of STRSV .
  295. C
  296. END