svd.f 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. *DECK SVD
  2. SUBROUTINE SVD (NM, M, N, A, W, MATU, U, MATV, V, IERR, RV1)
  3. C***BEGIN PROLOGUE SVD
  4. C***SUBSIDIARY
  5. C***PURPOSE Perform the singular value decomposition of a rectangular
  6. C matrix.
  7. C***LIBRARY SLATEC
  8. C***TYPE SINGLE PRECISION (SVD-S)
  9. C***AUTHOR (UNKNOWN)
  10. C***DESCRIPTION
  11. C
  12. C This subroutine is a translation of the ALGOL procedure SVD,
  13. C NUM. MATH. 14, 403-420(1970) by Golub and Reinsch.
  14. C HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 134-151(1971).
  15. C
  16. C This subroutine determines the singular value decomposition
  17. C T
  18. C A=USV of a REAL M by N rectangular matrix. Householder
  19. C bidiagonalization and a variant of the QR algorithm are used.
  20. C
  21. C On Input
  22. C
  23. C NM must be set to the row dimension of the two-dimensional
  24. C array parameters, A, U and V, as declared in the calling
  25. C program dimension statement. NM is an INTEGER variable.
  26. C Note that NM must be at least as large as the maximum
  27. C of M and N.
  28. C
  29. C M is the number of rows of A and U.
  30. C
  31. C N is the number of columns of A and U and the order of V.
  32. C
  33. C A contains the rectangular input matrix to be decomposed. A is
  34. C a two-dimensional REAL array, dimensioned A(NM,N).
  35. C
  36. C MATU should be set to .TRUE. if the U matrix in the
  37. C decomposition is desired, and to .FALSE. otherwise.
  38. C MATU is a LOGICAL variable.
  39. C
  40. C MATV should be set to .TRUE. if the V matrix in the
  41. C decomposition is desired, and to .FALSE. otherwise.
  42. C MATV is a LOGICAL variable.
  43. C
  44. C On Output
  45. C
  46. C A is unaltered (unless overwritten by U or V).
  47. C
  48. C W contains the N (non-negative) singular values of A (the
  49. C diagonal elements of S). They are unordered. If an
  50. C error exit is made, the singular values should be correct
  51. C for indices IERR+1, IERR+2, ..., N. W is a one-dimensional
  52. C REAL array, dimensioned W(N).
  53. C
  54. C U contains the matrix U (orthogonal column vectors) of the
  55. C decomposition if MATU has been set to .TRUE. Otherwise,
  56. C U is used as a temporary array. U may coincide with A.
  57. C If an error exit is made, the columns of U corresponding
  58. C to indices of correct singular values should be correct.
  59. C U is a two-dimensional REAL array, dimensioned U(NM,N).
  60. C
  61. C V contains the matrix V (orthogonal) of the decomposition if
  62. C MATV has been set to .TRUE. Otherwise, V is not referenced.
  63. C V may also coincide with A if U does not. If an error
  64. C exit is made, the columns of V corresponding to indices of
  65. C correct singular values should be correct. V is a two-
  66. C dimensional REAL array, dimensioned V(NM,N).
  67. C
  68. C IERR is an INTEGER flag set to
  69. C Zero for normal return,
  70. C K if the K-th singular value has not been
  71. C determined after 30 iterations.
  72. C
  73. C RV1 is a one-dimensional REAL array used for temporary storage,
  74. C dimensioned RV1(N).
  75. C
  76. C CALLS PYTHAG(A,B) for sqrt(A**2 + B**2).
  77. C
  78. C Questions and comments should be directed to B. S. Garbow,
  79. C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
  80. C ------------------------------------------------------------------
  81. C
  82. C***SEE ALSO EISDOC
  83. C***ROUTINES CALLED PYTHAG
  84. C***REVISION HISTORY (YYMMDD)
  85. C 811101 DATE WRITTEN
  86. C 890531 Changed all specific intrinsics to generic. (WRB)
  87. C 890831 Modified array declarations. (WRB)
  88. C 891214 Prologue converted to Version 4.0 format. (BAB)
  89. C 900402 Added TYPE section. (WRB)
  90. C***END PROLOGUE SVD
  91. C
  92. INTEGER I,J,K,L,M,N,II,I1,KK,K1,LL,L1,MN,NM,ITS,IERR
  93. REAL A(NM,*),W(*),U(NM,*),V(NM,*),RV1(*)
  94. REAL C,F,G,H,S,X,Y,Z,SCALE,S1
  95. REAL PYTHAG
  96. LOGICAL MATU,MATV
  97. C
  98. C***FIRST EXECUTABLE STATEMENT SVD
  99. IERR = 0
  100. C
  101. DO 100 I = 1, M
  102. C
  103. DO 100 J = 1, N
  104. U(I,J) = A(I,J)
  105. 100 CONTINUE
  106. C .......... HOUSEHOLDER REDUCTION TO BIDIAGONAL FORM ..........
  107. G = 0.0E0
  108. SCALE = 0.0E0
  109. S1 = 0.0E0
  110. C
  111. DO 300 I = 1, N
  112. L = I + 1
  113. RV1(I) = SCALE * G
  114. G = 0.0E0
  115. S = 0.0E0
  116. SCALE = 0.0E0
  117. IF (I .GT. M) GO TO 210
  118. C
  119. DO 120 K = I, M
  120. 120 SCALE = SCALE + ABS(U(K,I))
  121. C
  122. IF (SCALE .EQ. 0.0E0) GO TO 210
  123. C
  124. DO 130 K = I, M
  125. U(K,I) = U(K,I) / SCALE
  126. S = S + U(K,I)**2
  127. 130 CONTINUE
  128. C
  129. F = U(I,I)
  130. G = -SIGN(SQRT(S),F)
  131. H = F * G - S
  132. U(I,I) = F - G
  133. IF (I .EQ. N) GO TO 190
  134. C
  135. DO 150 J = L, N
  136. S = 0.0E0
  137. C
  138. DO 140 K = I, M
  139. 140 S = S + U(K,I) * U(K,J)
  140. C
  141. F = S / H
  142. C
  143. DO 150 K = I, M
  144. U(K,J) = U(K,J) + F * U(K,I)
  145. 150 CONTINUE
  146. C
  147. 190 DO 200 K = I, M
  148. 200 U(K,I) = SCALE * U(K,I)
  149. C
  150. 210 W(I) = SCALE * G
  151. G = 0.0E0
  152. S = 0.0E0
  153. SCALE = 0.0E0
  154. IF (I .GT. M .OR. I .EQ. N) GO TO 290
  155. C
  156. DO 220 K = L, N
  157. 220 SCALE = SCALE + ABS(U(I,K))
  158. C
  159. IF (SCALE .EQ. 0.0E0) GO TO 290
  160. C
  161. DO 230 K = L, N
  162. U(I,K) = U(I,K) / SCALE
  163. S = S + U(I,K)**2
  164. 230 CONTINUE
  165. C
  166. F = U(I,L)
  167. G = -SIGN(SQRT(S),F)
  168. H = F * G - S
  169. U(I,L) = F - G
  170. C
  171. DO 240 K = L, N
  172. 240 RV1(K) = U(I,K) / H
  173. C
  174. IF (I .EQ. M) GO TO 270
  175. C
  176. DO 260 J = L, M
  177. S = 0.0E0
  178. C
  179. DO 250 K = L, N
  180. 250 S = S + U(J,K) * U(I,K)
  181. C
  182. DO 260 K = L, N
  183. U(J,K) = U(J,K) + S * RV1(K)
  184. 260 CONTINUE
  185. C
  186. 270 DO 280 K = L, N
  187. 280 U(I,K) = SCALE * U(I,K)
  188. C
  189. 290 S1 = MAX(S1,ABS(W(I))+ABS(RV1(I)))
  190. 300 CONTINUE
  191. C .......... ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS ..........
  192. IF (.NOT. MATV) GO TO 410
  193. C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
  194. DO 400 II = 1, N
  195. I = N + 1 - II
  196. IF (I .EQ. N) GO TO 390
  197. IF (G .EQ. 0.0E0) GO TO 360
  198. C
  199. DO 320 J = L, N
  200. C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
  201. 320 V(J,I) = (U(I,J) / U(I,L)) / G
  202. C
  203. DO 350 J = L, N
  204. S = 0.0E0
  205. C
  206. DO 340 K = L, N
  207. 340 S = S + U(I,K) * V(K,J)
  208. C
  209. DO 350 K = L, N
  210. V(K,J) = V(K,J) + S * V(K,I)
  211. 350 CONTINUE
  212. C
  213. 360 DO 380 J = L, N
  214. V(I,J) = 0.0E0
  215. V(J,I) = 0.0E0
  216. 380 CONTINUE
  217. C
  218. 390 V(I,I) = 1.0E0
  219. G = RV1(I)
  220. L = I
  221. 400 CONTINUE
  222. C .......... ACCUMULATION OF LEFT-HAND TRANSFORMATIONS ..........
  223. 410 IF (.NOT. MATU) GO TO 510
  224. C ..........FOR I=MIN(M,N) STEP -1 UNTIL 1 DO -- ..........
  225. MN = N
  226. IF (M .LT. N) MN = M
  227. C
  228. DO 500 II = 1, MN
  229. I = MN + 1 - II
  230. L = I + 1
  231. G = W(I)
  232. IF (I .EQ. N) GO TO 430
  233. C
  234. DO 420 J = L, N
  235. 420 U(I,J) = 0.0E0
  236. C
  237. 430 IF (G .EQ. 0.0E0) GO TO 475
  238. IF (I .EQ. MN) GO TO 460
  239. C
  240. DO 450 J = L, N
  241. S = 0.0E0
  242. C
  243. DO 440 K = L, M
  244. 440 S = S + U(K,I) * U(K,J)
  245. C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
  246. F = (S / U(I,I)) / G
  247. C
  248. DO 450 K = I, M
  249. U(K,J) = U(K,J) + F * U(K,I)
  250. 450 CONTINUE
  251. C
  252. 460 DO 470 J = I, M
  253. 470 U(J,I) = U(J,I) / G
  254. C
  255. GO TO 490
  256. C
  257. 475 DO 480 J = I, M
  258. 480 U(J,I) = 0.0E0
  259. C
  260. 490 U(I,I) = U(I,I) + 1.0E0
  261. 500 CONTINUE
  262. C .......... DIAGONALIZATION OF THE BIDIAGONAL FORM ..........
  263. 510 CONTINUE
  264. C .......... FOR K=N STEP -1 UNTIL 1 DO -- ..........
  265. DO 700 KK = 1, N
  266. K1 = N - KK
  267. K = K1 + 1
  268. ITS = 0
  269. C .......... TEST FOR SPLITTING.
  270. C FOR L=K STEP -1 UNTIL 1 DO -- ..........
  271. 520 DO 530 LL = 1, K
  272. L1 = K - LL
  273. L = L1 + 1
  274. IF (S1 + ABS(RV1(L)) .EQ. S1) GO TO 565
  275. C .......... RV1(1) IS ALWAYS ZERO, SO THERE IS NO EXIT
  276. C THROUGH THE BOTTOM OF THE LOOP ..........
  277. IF (S1 + ABS(W(L1)) .EQ. S1) GO TO 540
  278. 530 CONTINUE
  279. C .......... CANCELLATION OF RV1(L) IF L GREATER THAN 1 ..........
  280. 540 C = 0.0E0
  281. S = 1.0E0
  282. C
  283. DO 560 I = L, K
  284. F = S * RV1(I)
  285. RV1(I) = C * RV1(I)
  286. IF (S1 + ABS(F) .EQ. S1) GO TO 565
  287. G = W(I)
  288. H = PYTHAG(F,G)
  289. W(I) = H
  290. C = G / H
  291. S = -F / H
  292. IF (.NOT. MATU) GO TO 560
  293. C
  294. DO 550 J = 1, M
  295. Y = U(J,L1)
  296. Z = U(J,I)
  297. U(J,L1) = Y * C + Z * S
  298. U(J,I) = -Y * S + Z * C
  299. 550 CONTINUE
  300. C
  301. 560 CONTINUE
  302. C .......... TEST FOR CONVERGENCE ..........
  303. 565 Z = W(K)
  304. IF (L .EQ. K) GO TO 650
  305. C .......... SHIFT FROM BOTTOM 2 BY 2 MINOR ..........
  306. IF (ITS .EQ. 30) GO TO 1000
  307. ITS = ITS + 1
  308. X = W(L)
  309. Y = W(K1)
  310. G = RV1(K1)
  311. H = RV1(K)
  312. F = 0.5E0 * (((G + Z) / H) * ((G - Z) / Y) + Y / H - H / Y)
  313. G = PYTHAG(F,1.0E0)
  314. F = X - (Z / X) * Z + (H / X) * (Y / (F + SIGN(G,F)) - H)
  315. C .......... NEXT QR TRANSFORMATION ..........
  316. C = 1.0E0
  317. S = 1.0E0
  318. C
  319. DO 600 I1 = L, K1
  320. I = I1 + 1
  321. G = RV1(I)
  322. Y = W(I)
  323. H = S * G
  324. G = C * G
  325. Z = PYTHAG(F,H)
  326. RV1(I1) = Z
  327. C = F / Z
  328. S = H / Z
  329. F = X * C + G * S
  330. G = -X * S + G * C
  331. H = Y * S
  332. Y = Y * C
  333. IF (.NOT. MATV) GO TO 575
  334. C
  335. DO 570 J = 1, N
  336. X = V(J,I1)
  337. Z = V(J,I)
  338. V(J,I1) = X * C + Z * S
  339. V(J,I) = -X * S + Z * C
  340. 570 CONTINUE
  341. C
  342. 575 Z = PYTHAG(F,H)
  343. W(I1) = Z
  344. C .......... ROTATION CAN BE ARBITRARY IF Z IS ZERO ..........
  345. IF (Z .EQ. 0.0E0) GO TO 580
  346. C = F / Z
  347. S = H / Z
  348. 580 F = C * G + S * Y
  349. X = -S * G + C * Y
  350. IF (.NOT. MATU) GO TO 600
  351. C
  352. DO 590 J = 1, M
  353. Y = U(J,I1)
  354. Z = U(J,I)
  355. U(J,I1) = Y * C + Z * S
  356. U(J,I) = -Y * S + Z * C
  357. 590 CONTINUE
  358. C
  359. 600 CONTINUE
  360. C
  361. RV1(L) = 0.0E0
  362. RV1(K) = F
  363. W(K) = X
  364. GO TO 520
  365. C .......... CONVERGENCE ..........
  366. 650 IF (Z .GE. 0.0E0) GO TO 700
  367. C .......... W(K) IS MADE NON-NEGATIVE ..........
  368. W(K) = -Z
  369. IF (.NOT. MATV) GO TO 700
  370. C
  371. DO 690 J = 1, N
  372. 690 V(J,K) = -V(J,K)
  373. C
  374. 700 CONTINUE
  375. C
  376. GO TO 1001
  377. C .......... SET ERROR -- NO CONVERGENCE TO A
  378. C SINGULAR VALUE AFTER 30 ITERATIONS ..........
  379. 1000 IERR = K
  380. 1001 RETURN
  381. END