123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- *DECK SVD
- SUBROUTINE SVD (NM, M, N, A, W, MATU, U, MATV, V, IERR, RV1)
- C***BEGIN PROLOGUE SVD
- C***SUBSIDIARY
- C***PURPOSE Perform the singular value decomposition of a rectangular
- C matrix.
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (SVD-S)
- C***AUTHOR (UNKNOWN)
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure SVD,
- C NUM. MATH. 14, 403-420(1970) by Golub and Reinsch.
- C HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 134-151(1971).
- C
- C This subroutine determines the singular value decomposition
- C T
- C A=USV of a REAL M by N rectangular matrix. Householder
- C bidiagonalization and a variant of the QR algorithm are used.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A, U and V, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C Note that NM must be at least as large as the maximum
- C of M and N.
- C
- C M is the number of rows of A and U.
- C
- C N is the number of columns of A and U and the order of V.
- C
- C A contains the rectangular input matrix to be decomposed. A is
- C a two-dimensional REAL array, dimensioned A(NM,N).
- C
- C MATU should be set to .TRUE. if the U matrix in the
- C decomposition is desired, and to .FALSE. otherwise.
- C MATU is a LOGICAL variable.
- C
- C MATV should be set to .TRUE. if the V matrix in the
- C decomposition is desired, and to .FALSE. otherwise.
- C MATV is a LOGICAL variable.
- C
- C On Output
- C
- C A is unaltered (unless overwritten by U or V).
- C
- C W contains the N (non-negative) singular values of A (the
- C diagonal elements of S). They are unordered. If an
- C error exit is made, the singular values should be correct
- C for indices IERR+1, IERR+2, ..., N. W is a one-dimensional
- C REAL array, dimensioned W(N).
- C
- C U contains the matrix U (orthogonal column vectors) of the
- C decomposition if MATU has been set to .TRUE. Otherwise,
- C U is used as a temporary array. U may coincide with A.
- C If an error exit is made, the columns of U corresponding
- C to indices of correct singular values should be correct.
- C U is a two-dimensional REAL array, dimensioned U(NM,N).
- C
- C V contains the matrix V (orthogonal) of the decomposition if
- C MATV has been set to .TRUE. Otherwise, V is not referenced.
- C V may also coincide with A if U does not. If an error
- C exit is made, the columns of V corresponding to indices of
- C correct singular values should be correct. V is a two-
- C dimensional REAL array, dimensioned V(NM,N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C K if the K-th singular value has not been
- C determined after 30 iterations.
- C
- C RV1 is a one-dimensional REAL array used for temporary storage,
- C dimensioned RV1(N).
- C
- C CALLS PYTHAG(A,B) for sqrt(A**2 + B**2).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***SEE ALSO EISDOC
- C***ROUTINES CALLED PYTHAG
- C***REVISION HISTORY (YYMMDD)
- C 811101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900402 Added TYPE section. (WRB)
- C***END PROLOGUE SVD
- C
- INTEGER I,J,K,L,M,N,II,I1,KK,K1,LL,L1,MN,NM,ITS,IERR
- REAL A(NM,*),W(*),U(NM,*),V(NM,*),RV1(*)
- REAL C,F,G,H,S,X,Y,Z,SCALE,S1
- REAL PYTHAG
- LOGICAL MATU,MATV
- C
- C***FIRST EXECUTABLE STATEMENT SVD
- IERR = 0
- C
- DO 100 I = 1, M
- C
- DO 100 J = 1, N
- U(I,J) = A(I,J)
- 100 CONTINUE
- C .......... HOUSEHOLDER REDUCTION TO BIDIAGONAL FORM ..........
- G = 0.0E0
- SCALE = 0.0E0
- S1 = 0.0E0
- C
- DO 300 I = 1, N
- L = I + 1
- RV1(I) = SCALE * G
- G = 0.0E0
- S = 0.0E0
- SCALE = 0.0E0
- IF (I .GT. M) GO TO 210
- C
- DO 120 K = I, M
- 120 SCALE = SCALE + ABS(U(K,I))
- C
- IF (SCALE .EQ. 0.0E0) GO TO 210
- C
- DO 130 K = I, M
- U(K,I) = U(K,I) / SCALE
- S = S + U(K,I)**2
- 130 CONTINUE
- C
- F = U(I,I)
- G = -SIGN(SQRT(S),F)
- H = F * G - S
- U(I,I) = F - G
- IF (I .EQ. N) GO TO 190
- C
- DO 150 J = L, N
- S = 0.0E0
- C
- DO 140 K = I, M
- 140 S = S + U(K,I) * U(K,J)
- C
- F = S / H
- C
- DO 150 K = I, M
- U(K,J) = U(K,J) + F * U(K,I)
- 150 CONTINUE
- C
- 190 DO 200 K = I, M
- 200 U(K,I) = SCALE * U(K,I)
- C
- 210 W(I) = SCALE * G
- G = 0.0E0
- S = 0.0E0
- SCALE = 0.0E0
- IF (I .GT. M .OR. I .EQ. N) GO TO 290
- C
- DO 220 K = L, N
- 220 SCALE = SCALE + ABS(U(I,K))
- C
- IF (SCALE .EQ. 0.0E0) GO TO 290
- C
- DO 230 K = L, N
- U(I,K) = U(I,K) / SCALE
- S = S + U(I,K)**2
- 230 CONTINUE
- C
- F = U(I,L)
- G = -SIGN(SQRT(S),F)
- H = F * G - S
- U(I,L) = F - G
- C
- DO 240 K = L, N
- 240 RV1(K) = U(I,K) / H
- C
- IF (I .EQ. M) GO TO 270
- C
- DO 260 J = L, M
- S = 0.0E0
- C
- DO 250 K = L, N
- 250 S = S + U(J,K) * U(I,K)
- C
- DO 260 K = L, N
- U(J,K) = U(J,K) + S * RV1(K)
- 260 CONTINUE
- C
- 270 DO 280 K = L, N
- 280 U(I,K) = SCALE * U(I,K)
- C
- 290 S1 = MAX(S1,ABS(W(I))+ABS(RV1(I)))
- 300 CONTINUE
- C .......... ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS ..........
- IF (.NOT. MATV) GO TO 410
- C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
- DO 400 II = 1, N
- I = N + 1 - II
- IF (I .EQ. N) GO TO 390
- IF (G .EQ. 0.0E0) GO TO 360
- C
- DO 320 J = L, N
- C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
- 320 V(J,I) = (U(I,J) / U(I,L)) / G
- C
- DO 350 J = L, N
- S = 0.0E0
- C
- DO 340 K = L, N
- 340 S = S + U(I,K) * V(K,J)
- C
- DO 350 K = L, N
- V(K,J) = V(K,J) + S * V(K,I)
- 350 CONTINUE
- C
- 360 DO 380 J = L, N
- V(I,J) = 0.0E0
- V(J,I) = 0.0E0
- 380 CONTINUE
- C
- 390 V(I,I) = 1.0E0
- G = RV1(I)
- L = I
- 400 CONTINUE
- C .......... ACCUMULATION OF LEFT-HAND TRANSFORMATIONS ..........
- 410 IF (.NOT. MATU) GO TO 510
- C ..........FOR I=MIN(M,N) STEP -1 UNTIL 1 DO -- ..........
- MN = N
- IF (M .LT. N) MN = M
- C
- DO 500 II = 1, MN
- I = MN + 1 - II
- L = I + 1
- G = W(I)
- IF (I .EQ. N) GO TO 430
- C
- DO 420 J = L, N
- 420 U(I,J) = 0.0E0
- C
- 430 IF (G .EQ. 0.0E0) GO TO 475
- IF (I .EQ. MN) GO TO 460
- C
- DO 450 J = L, N
- S = 0.0E0
- C
- DO 440 K = L, M
- 440 S = S + U(K,I) * U(K,J)
- C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
- F = (S / U(I,I)) / G
- C
- DO 450 K = I, M
- U(K,J) = U(K,J) + F * U(K,I)
- 450 CONTINUE
- C
- 460 DO 470 J = I, M
- 470 U(J,I) = U(J,I) / G
- C
- GO TO 490
- C
- 475 DO 480 J = I, M
- 480 U(J,I) = 0.0E0
- C
- 490 U(I,I) = U(I,I) + 1.0E0
- 500 CONTINUE
- C .......... DIAGONALIZATION OF THE BIDIAGONAL FORM ..........
- 510 CONTINUE
- C .......... FOR K=N STEP -1 UNTIL 1 DO -- ..........
- DO 700 KK = 1, N
- K1 = N - KK
- K = K1 + 1
- ITS = 0
- C .......... TEST FOR SPLITTING.
- C FOR L=K STEP -1 UNTIL 1 DO -- ..........
- 520 DO 530 LL = 1, K
- L1 = K - LL
- L = L1 + 1
- IF (S1 + ABS(RV1(L)) .EQ. S1) GO TO 565
- C .......... RV1(1) IS ALWAYS ZERO, SO THERE IS NO EXIT
- C THROUGH THE BOTTOM OF THE LOOP ..........
- IF (S1 + ABS(W(L1)) .EQ. S1) GO TO 540
- 530 CONTINUE
- C .......... CANCELLATION OF RV1(L) IF L GREATER THAN 1 ..........
- 540 C = 0.0E0
- S = 1.0E0
- C
- DO 560 I = L, K
- F = S * RV1(I)
- RV1(I) = C * RV1(I)
- IF (S1 + ABS(F) .EQ. S1) GO TO 565
- G = W(I)
- H = PYTHAG(F,G)
- W(I) = H
- C = G / H
- S = -F / H
- IF (.NOT. MATU) GO TO 560
- C
- DO 550 J = 1, M
- Y = U(J,L1)
- Z = U(J,I)
- U(J,L1) = Y * C + Z * S
- U(J,I) = -Y * S + Z * C
- 550 CONTINUE
- C
- 560 CONTINUE
- C .......... TEST FOR CONVERGENCE ..........
- 565 Z = W(K)
- IF (L .EQ. K) GO TO 650
- C .......... SHIFT FROM BOTTOM 2 BY 2 MINOR ..........
- IF (ITS .EQ. 30) GO TO 1000
- ITS = ITS + 1
- X = W(L)
- Y = W(K1)
- G = RV1(K1)
- H = RV1(K)
- F = 0.5E0 * (((G + Z) / H) * ((G - Z) / Y) + Y / H - H / Y)
- G = PYTHAG(F,1.0E0)
- F = X - (Z / X) * Z + (H / X) * (Y / (F + SIGN(G,F)) - H)
- C .......... NEXT QR TRANSFORMATION ..........
- C = 1.0E0
- S = 1.0E0
- C
- DO 600 I1 = L, K1
- I = I1 + 1
- G = RV1(I)
- Y = W(I)
- H = S * G
- G = C * G
- Z = PYTHAG(F,H)
- RV1(I1) = Z
- C = F / Z
- S = H / Z
- F = X * C + G * S
- G = -X * S + G * C
- H = Y * S
- Y = Y * C
- IF (.NOT. MATV) GO TO 575
- C
- DO 570 J = 1, N
- X = V(J,I1)
- Z = V(J,I)
- V(J,I1) = X * C + Z * S
- V(J,I) = -X * S + Z * C
- 570 CONTINUE
- C
- 575 Z = PYTHAG(F,H)
- W(I1) = Z
- C .......... ROTATION CAN BE ARBITRARY IF Z IS ZERO ..........
- IF (Z .EQ. 0.0E0) GO TO 580
- C = F / Z
- S = H / Z
- 580 F = C * G + S * Y
- X = -S * G + C * Y
- IF (.NOT. MATU) GO TO 600
- C
- DO 590 J = 1, M
- Y = U(J,I1)
- Z = U(J,I)
- U(J,I1) = Y * C + Z * S
- U(J,I) = -Y * S + Z * C
- 590 CONTINUE
- C
- 600 CONTINUE
- C
- RV1(L) = 0.0E0
- RV1(K) = F
- W(K) = X
- GO TO 520
- C .......... CONVERGENCE ..........
- 650 IF (Z .GE. 0.0E0) GO TO 700
- C .......... W(K) IS MADE NON-NEGATIVE ..........
- W(K) = -Z
- IF (.NOT. MATV) GO TO 700
- C
- DO 690 J = 1, N
- 690 V(J,K) = -V(J,K)
- C
- 700 CONTINUE
- C
- GO TO 1001
- C .......... SET ERROR -- NO CONVERGENCE TO A
- C SINGULAR VALUE AFTER 30 ITERATIONS ..........
- 1000 IERR = K
- 1001 RETURN
- END
|