123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- *DECK TEVLC
- SUBROUTINE TEVLC (N, D, E2, IERR)
- C***BEGIN PROLOGUE TEVLC
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to CBLKTR
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (TEVLC-S)
- C***AUTHOR (UNKNOWN)
- C***DESCRIPTION
- C
- C This subroutine finds the eigenvalues of a symmetric tridiagonal
- C matrix by the rational QL method.
- C
- C On Input-
- C
- C N is the order of the matrix,
- C
- C D contains the diagonal elements of the input matrix,
- C
- C E2 contains the subdiagonal elements of the input matrix
- C in its last N-1 positions. E2(1) is arbitrary.
- C
- C On Output-
- C
- C D contains the eigenvalues in ascending order. If an
- C error exit is made, the eigenvalues are correct and
- C ordered for indices 1,2,...IERR-1, but may not be
- C the smallest eigenvalues,
- C
- C E2 has been destroyed,
- C
- C IERR is set to
- C ZERO for normal return,
- C J if the J-th eigenvalue has not been
- C determined after 30 iterations.
- C
- C***SEE ALSO CBLKTR
- C***REFERENCES C. H. Reinsch, Eigenvalues of a real, symmetric, tri-
- C diagonal matrix, Algorithm 464, Communications of the
- C ACM 16, 11 (November 1973), pp. 689.
- C***ROUTINES CALLED (NONE)
- C***COMMON BLOCKS CCBLK
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900402 Added TYPE section. (WRB)
- C 920528 DESCRIPTION revised and REFERENCES section added. (WRB)
- C***END PROLOGUE TEVLC
- C
- INTEGER I ,J ,L ,M ,
- 1 N ,II ,L1 ,MML ,
- 2 IERR
- REAL D(*) ,E2(*)
- REAL B ,C ,F ,G ,
- 1 H ,P ,R ,S ,
- 2 MACHEP
- C
- COMMON /CCBLK/ NPP ,K ,MACHEP ,CNV ,
- 1 NM ,NCMPLX ,IK
- C***FIRST EXECUTABLE STATEMENT TEVLC
- IERR = 0
- IF (N .EQ. 1) GO TO 115
- C
- DO 101 I=2,N
- E2(I-1) = E2(I)*E2(I)
- 101 CONTINUE
- C
- F = 0.0
- B = 0.0
- E2(N) = 0.0
- C
- DO 112 L=1,N
- J = 0
- H = MACHEP*(ABS(D(L))+SQRT(E2(L)))
- IF (B .GT. H) GO TO 102
- B = H
- C = B*B
- C
- C ********** LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT **********
- C
- 102 DO 103 M=L,N
- IF (E2(M) .LE. C) GO TO 104
- C
- C ********** E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
- C THROUGH THE BOTTOM OF THE LOOP **********
- C
- 103 CONTINUE
- C
- 104 IF (M .EQ. L) GO TO 108
- 105 IF (J .EQ. 30) GO TO 114
- J = J+1
- C
- C ********** FORM SHIFT **********
- C
- L1 = L+1
- S = SQRT(E2(L))
- G = D(L)
- P = (D(L1)-G)/(2.0*S)
- R = SQRT(P*P+1.0)
- D(L) = S/(P+SIGN(R,P))
- H = G-D(L)
- C
- DO 106 I=L1,N
- D(I) = D(I)-H
- 106 CONTINUE
- C
- F = F+H
- C
- C ********** RATIONAL QL TRANSFORMATION **********
- C
- G = D(M)
- IF (G .EQ. 0.0) G = B
- H = G
- S = 0.0
- MML = M-L
- C
- C ********** FOR I=M-1 STEP -1 UNTIL L DO -- **********
- C
- DO 107 II=1,MML
- I = M-II
- P = G*H
- R = P+E2(I)
- E2(I+1) = S*R
- S = E2(I)/R
- D(I+1) = H+S*(H+D(I))
- G = D(I)-E2(I)/G
- IF (G .EQ. 0.0) G = B
- H = G*P/R
- 107 CONTINUE
- C
- E2(L) = S*G
- D(L) = H
- C
- C ********** GUARD AGAINST UNDERFLOWED H **********
- C
- IF (H .EQ. 0.0) GO TO 108
- IF (ABS(E2(L)) .LE. ABS(C/H)) GO TO 108
- E2(L) = H*E2(L)
- IF (E2(L) .NE. 0.0) GO TO 105
- 108 P = D(L)+F
- C
- C ********** ORDER EIGENVALUES **********
- C
- IF (L .EQ. 1) GO TO 110
- C
- C ********** FOR I=L STEP -1 UNTIL 2 DO -- **********
- C
- DO 109 II=2,L
- I = L+2-II
- IF (P .GE. D(I-1)) GO TO 111
- D(I) = D(I-1)
- 109 CONTINUE
- C
- 110 I = 1
- 111 D(I) = P
- 112 CONTINUE
- C
- IF (ABS(D(N)) .GE. ABS(D(1))) GO TO 115
- NHALF = N/2
- DO 113 I=1,NHALF
- NTOP = N-I
- DHOLD = D(I)
- D(I) = D(NTOP+1)
- D(NTOP+1) = DHOLD
- 113 CONTINUE
- GO TO 115
- C
- C ********** SET ERROR -- NO CONVERGENCE TO AN
- C EIGENVALUE AFTER 30 ITERATIONS **********
- C
- 114 IERR = L
- 115 RETURN
- C
- C ********** LAST CARD OF TQLRAT **********
- C
- END
|