123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- *DECK TINVIT
- SUBROUTINE TINVIT (NM, N, D, E, E2, M, W, IND, Z, IERR, RV1, RV2,
- + RV3, RV4, RV6)
- C***BEGIN PROLOGUE TINVIT
- C***PURPOSE Compute the eigenvectors of symmetric tridiagonal matrix
- C corresponding to specified eigenvalues, using inverse
- C iteration.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C3
- C***TYPE SINGLE PRECISION (TINVIT-S)
- C***KEYWORDS EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the inverse iteration tech-
- C nique in the ALGOL procedure TRISTURM by Peters and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
- C
- C This subroutine finds those eigenvectors of a TRIDIAGONAL
- C SYMMETRIC matrix corresponding to specified eigenvalues,
- C using inverse iteration.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, Z, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C D contains the diagonal elements of the symmetric tridiagonal
- C matrix. D is a one-dimensional REAL array, dimensioned D(N).
- C
- C E contains the subdiagonal elements of the symmetric
- C tridiagonal matrix in its last N-1 positions. E(1) is
- C arbitrary. E is a one-dimensional REAL array, dimensioned
- C E(N).
- C
- C E2 contains the squares of the corresponding elements of E,
- C with zeros corresponding to negligible elements of E.
- C E(I) is considered negligible if it is not larger than
- C the product of the relative machine precision and the sum
- C of the magnitudes of D(I) and D(I-1). E2(1) must contain
- C 0.0e0 if the eigenvalues are in ascending order, or 2.0e0
- C if the eigenvalues are in descending order. If BISECT,
- C TRIDIB, or IMTQLV has been used to find the eigenvalues,
- C their output E2 array is exactly what is expected here.
- C E2 is a one-dimensional REAL array, dimensioned E2(N).
- C
- C M is the number of specified eigenvalues for which eigenvectors
- C are to be determined. M is an INTEGER variable.
- C
- C W contains the M eigenvalues in ascending or descending order.
- C W is a one-dimensional REAL array, dimensioned W(M).
- C
- C IND contains in its first M positions the submatrix indices
- C associated with the corresponding eigenvalues in W --
- C 1 for eigenvalues belonging to the first submatrix from
- C the top, 2 for those belonging to the second submatrix, etc.
- C If BISECT or TRIDIB has been used to determine the
- C eigenvalues, their output IND array is suitable for input
- C to TINVIT. IND is a one-dimensional INTEGER array,
- C dimensioned IND(M).
- C
- C On Output
- C
- C ** All input arrays are unaltered.**
- C
- C Z contains the associated set of orthonormal eigenvectors.
- C Any vector which fails to converge is set to zero.
- C Z is a two-dimensional REAL array, dimensioned Z(NM,M).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C -J if the eigenvector corresponding to the J-th
- C eigenvalue fails to converge in 5 iterations.
- C
- C RV1, RV2 and RV3 are one-dimensional REAL arrays used for
- C temporary storage. They are used to store the main diagonal
- C and the two adjacent diagonals of the triangular matrix
- C produced in the inverse iteration process. RV1, RV2 and
- C RV3 are dimensioned RV1(N), RV2(N) and RV3(N).
- C
- C RV4 and RV6 are one-dimensional REAL arrays used for temporary
- C storage. RV4 holds the multipliers of the Gaussian
- C elimination process. RV6 holds the approximate eigenvectors
- C in this process. RV4 and RV6 are dimensioned RV4(N) and
- C RV6(N).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE TINVIT
- C
- INTEGER I,J,M,N,P,Q,R,S,II,IP,JJ,NM,ITS,TAG,IERR,GROUP
- INTEGER IND(*)
- REAL D(*),E(*),E2(*),W(*),Z(NM,*)
- REAL RV1(*),RV2(*),RV3(*),RV4(*),RV6(*)
- REAL U,V,UK,XU,X0,X1,EPS2,EPS3,EPS4,NORM,ORDER
- C
- C***FIRST EXECUTABLE STATEMENT TINVIT
- IERR = 0
- IF (M .EQ. 0) GO TO 1001
- TAG = 0
- ORDER = 1.0E0 - E2(1)
- Q = 0
- C .......... ESTABLISH AND PROCESS NEXT SUBMATRIX ..........
- 100 P = Q + 1
- C
- DO 120 Q = P, N
- IF (Q .EQ. N) GO TO 140
- IF (E2(Q+1) .EQ. 0.0E0) GO TO 140
- 120 CONTINUE
- C .......... FIND VECTORS BY INVERSE ITERATION ..........
- 140 TAG = TAG + 1
- S = 0
- C
- DO 920 R = 1, M
- IF (IND(R) .NE. TAG) GO TO 920
- ITS = 1
- X1 = W(R)
- IF (S .NE. 0) GO TO 510
- C .......... CHECK FOR ISOLATED ROOT ..........
- XU = 1.0E0
- IF (P .NE. Q) GO TO 490
- RV6(P) = 1.0E0
- GO TO 870
- 490 NORM = ABS(D(P))
- IP = P + 1
- C
- DO 500 I = IP, Q
- 500 NORM = MAX(NORM, ABS(D(I)) + ABS(E(I)))
- C .......... EPS2 IS THE CRITERION FOR GROUPING,
- C EPS3 REPLACES ZERO PIVOTS AND EQUAL
- C ROOTS ARE MODIFIED BY EPS3,
- C EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW ..........
- EPS2 = 1.0E-3 * NORM
- EPS3 = NORM
- 502 EPS3 = 0.5E0*EPS3
- IF (NORM + EPS3 .GT. NORM) GO TO 502
- UK = SQRT(REAL(Q-P+5))
- EPS3 = UK * EPS3
- EPS4 = UK * EPS3
- UK = EPS4 / UK
- S = P
- 505 GROUP = 0
- GO TO 520
- C .......... LOOK FOR CLOSE OR COINCIDENT ROOTS ..........
- 510 IF (ABS(X1-X0) .GE. EPS2) GO TO 505
- GROUP = GROUP + 1
- IF (ORDER * (X1 - X0) .LE. 0.0E0) X1 = X0 + ORDER * EPS3
- C .......... ELIMINATION WITH INTERCHANGES AND
- C INITIALIZATION OF VECTOR ..........
- 520 V = 0.0E0
- C
- DO 580 I = P, Q
- RV6(I) = UK
- IF (I .EQ. P) GO TO 560
- IF (ABS(E(I)) .LT. ABS(U)) GO TO 540
- C .......... WARNING -- A DIVIDE CHECK MAY OCCUR HERE IF
- C E2 ARRAY HAS NOT BEEN SPECIFIED CORRECTLY ..........
- XU = U / E(I)
- RV4(I) = XU
- RV1(I-1) = E(I)
- RV2(I-1) = D(I) - X1
- RV3(I-1) = 0.0E0
- IF (I .NE. Q) RV3(I-1) = E(I+1)
- U = V - XU * RV2(I-1)
- V = -XU * RV3(I-1)
- GO TO 580
- 540 XU = E(I) / U
- RV4(I) = XU
- RV1(I-1) = U
- RV2(I-1) = V
- RV3(I-1) = 0.0E0
- 560 U = D(I) - X1 - XU * V
- IF (I .NE. Q) V = E(I+1)
- 580 CONTINUE
- C
- IF (U .EQ. 0.0E0) U = EPS3
- RV1(Q) = U
- RV2(Q) = 0.0E0
- RV3(Q) = 0.0E0
- C .......... BACK SUBSTITUTION
- C FOR I=Q STEP -1 UNTIL P DO -- ..........
- 600 DO 620 II = P, Q
- I = P + Q - II
- RV6(I) = (RV6(I) - U * RV2(I) - V * RV3(I)) / RV1(I)
- V = U
- U = RV6(I)
- 620 CONTINUE
- C .......... ORTHOGONALIZE WITH RESPECT TO PREVIOUS
- C MEMBERS OF GROUP ..........
- IF (GROUP .EQ. 0) GO TO 700
- J = R
- C
- DO 680 JJ = 1, GROUP
- 630 J = J - 1
- IF (IND(J) .NE. TAG) GO TO 630
- XU = 0.0E0
- C
- DO 640 I = P, Q
- 640 XU = XU + RV6(I) * Z(I,J)
- C
- DO 660 I = P, Q
- 660 RV6(I) = RV6(I) - XU * Z(I,J)
- C
- 680 CONTINUE
- C
- 700 NORM = 0.0E0
- C
- DO 720 I = P, Q
- 720 NORM = NORM + ABS(RV6(I))
- C
- IF (NORM .GE. 1.0E0) GO TO 840
- C .......... FORWARD SUBSTITUTION ..........
- IF (ITS .EQ. 5) GO TO 830
- IF (NORM .NE. 0.0E0) GO TO 740
- RV6(S) = EPS4
- S = S + 1
- IF (S .GT. Q) S = P
- GO TO 780
- 740 XU = EPS4 / NORM
- C
- DO 760 I = P, Q
- 760 RV6(I) = RV6(I) * XU
- C .......... ELIMINATION OPERATIONS ON NEXT VECTOR
- C ITERATE ..........
- 780 DO 820 I = IP, Q
- U = RV6(I)
- C .......... IF RV1(I-1) .EQ. E(I), A ROW INTERCHANGE
- C WAS PERFORMED EARLIER IN THE
- C TRIANGULARIZATION PROCESS ..........
- IF (RV1(I-1) .NE. E(I)) GO TO 800
- U = RV6(I-1)
- RV6(I-1) = RV6(I)
- 800 RV6(I) = U - RV4(I) * RV6(I-1)
- 820 CONTINUE
- C
- ITS = ITS + 1
- GO TO 600
- C .......... SET ERROR -- NON-CONVERGED EIGENVECTOR ..........
- 830 IERR = -R
- XU = 0.0E0
- GO TO 870
- C .......... NORMALIZE SO THAT SUM OF SQUARES IS
- C 1 AND EXPAND TO FULL ORDER ..........
- 840 U = 0.0E0
- C
- DO 860 I = P, Q
- 860 U = U + RV6(I)**2
- C
- XU = 1.0E0 / SQRT(U)
- C
- 870 DO 880 I = 1, N
- 880 Z(I,R) = 0.0E0
- C
- DO 900 I = P, Q
- 900 Z(I,R) = RV6(I) * XU
- C
- X0 = X1
- 920 CONTINUE
- C
- IF (Q .LT. N) GO TO 100
- 1001 RETURN
- END
|