123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- *DECK TRBAK1
- SUBROUTINE TRBAK1 (NM, N, A, E, M, Z)
- C***BEGIN PROLOGUE TRBAK1
- C***PURPOSE Form the eigenvectors of real symmetric matrix from
- C the eigenvectors of a symmetric tridiagonal matrix formed
- C by TRED1.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C4
- C***TYPE SINGLE PRECISION (TRBAK1-S)
- C***KEYWORDS EIGENVECTORS OF A REAL SYMMETRIC MATRIX, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure TRBAK1,
- C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
- C
- C This subroutine forms the eigenvectors of a REAL SYMMETRIC
- C matrix by back transforming those of the corresponding
- C symmetric tridiagonal matrix determined by TRED1.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C A contains information about the orthogonal transformations
- C used in the reduction by TRED1 in its strict lower
- C triangle. A is a two-dimensional REAL array, dimensioned
- C A(NM,N).
- C
- C E contains the subdiagonal elements of the tridiagonal matrix
- C in its last N-1 positions. E(1) is arbitrary. These
- C elements provide the remaining information about the
- C orthogonal transformations. E is a one-dimensional REAL
- C array, dimensioned E(N).
- C
- C M is the number of columns of Z to be back transformed.
- C M is an INTEGER variable.
- C
- C Z contains the eigenvectors to be back transformed in its
- C first M columns. Z is a two-dimensional REAL array,
- C dimensioned Z(NM,M).
- C
- C On Output
- C
- C Z contains the transformed eigenvectors in its first M columns.
- C
- C Note that TRBAK1 preserves vector Euclidean norms.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE TRBAK1
- C
- INTEGER I,J,K,L,M,N,NM
- REAL A(NM,*),E(*),Z(NM,*)
- REAL S
- C
- C***FIRST EXECUTABLE STATEMENT TRBAK1
- IF (M .EQ. 0) GO TO 200
- IF (N .EQ. 1) GO TO 200
- C
- DO 140 I = 2, N
- L = I - 1
- IF (E(I) .EQ. 0.0E0) GO TO 140
- C
- DO 130 J = 1, M
- S = 0.0E0
- C
- DO 110 K = 1, L
- 110 S = S + A(I,K) * Z(K,J)
- C .......... DIVISOR BELOW IS NEGATIVE OF H FORMED IN TRED1.
- C DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
- S = (S / A(I,L)) / E(I)
- C
- DO 120 K = 1, L
- 120 Z(K,J) = Z(K,J) + S * A(I,K)
- C
- 130 CONTINUE
- C
- 140 CONTINUE
- C
- 200 RETURN
- END
|