123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- *DECK TRBAK3
- SUBROUTINE TRBAK3 (NM, N, NV, A, M, Z)
- C***BEGIN PROLOGUE TRBAK3
- C***PURPOSE Form the eigenvectors of a real symmetric matrix from the
- C eigenvectors of a symmetric tridiagonal matrix formed
- C by TRED3.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C4
- C***TYPE SINGLE PRECISION (TRBAK3-S)
- C***KEYWORDS EIGENVECTORS OF A REAL SYMMETRIC MATRIX, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure TRBAK3,
- C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
- C
- C This subroutine forms the eigenvectors of a REAL SYMMETRIC
- C matrix by back transforming those of the corresponding
- C symmetric tridiagonal matrix determined by TRED3.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, Z, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C NV is an INTEGER variable set equal to the dimension of the
- C array A as specified in the calling program. NV must not
- C be less than N*(N+1)/2.
- C
- C A contains information about the orthogonal transformations
- C used in the reduction by TRED3 in its first N*(N+1)/2
- C positions. A is a one-dimensional REAL array, dimensioned
- C A(NV).
- C
- C M is the number of columns of Z to be back transformed.
- C M is an INTEGER variable.
- C
- C Z contains the eigenvectors to be back transformed in its
- C first M columns. Z is a two-dimensional REAL array,
- C dimensioned Z(NM,M).
- C
- C On Output
- C
- C Z contains the transformed eigenvectors in its first M columns.
- C
- C Note that TRBAK3 preserves vector Euclidean norms.
- C
- C Questions and comments should be directed to b. s. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE TRBAK3
- C
- INTEGER I,J,K,L,M,N,IK,IZ,NM,NV
- REAL A(*),Z(NM,*)
- REAL H,S
- C
- C***FIRST EXECUTABLE STATEMENT TRBAK3
- IF (M .EQ. 0) GO TO 200
- IF (N .EQ. 1) GO TO 200
- C
- DO 140 I = 2, N
- L = I - 1
- IZ = (I * L) / 2
- IK = IZ + I
- H = A(IK)
- IF (H .EQ. 0.0E0) GO TO 140
- C
- DO 130 J = 1, M
- S = 0.0E0
- IK = IZ
- C
- DO 110 K = 1, L
- IK = IK + 1
- S = S + A(IK) * Z(K,J)
- 110 CONTINUE
- C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
- S = (S / H) / H
- IK = IZ
- C
- DO 120 K = 1, L
- IK = IK + 1
- Z(K,J) = Z(K,J) - S * A(IK)
- 120 CONTINUE
- C
- 130 CONTINUE
- C
- 140 CONTINUE
- C
- 200 RETURN
- END
|