tred2.f 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. *DECK TRED2
  2. SUBROUTINE TRED2 (NM, N, A, D, E, Z)
  3. C***BEGIN PROLOGUE TRED2
  4. C***PURPOSE Reduce a real symmetric matrix to a symmetric tridiagonal
  5. C matrix using and accumulating orthogonal transformations.
  6. C***LIBRARY SLATEC (EISPACK)
  7. C***CATEGORY D4C1B1
  8. C***TYPE SINGLE PRECISION (TRED2-S)
  9. C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
  10. C***AUTHOR Smith, B. T., et al.
  11. C***DESCRIPTION
  12. C
  13. C This subroutine is a translation of the ALGOL procedure TRED2,
  14. C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
  15. C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
  16. C
  17. C This subroutine reduces a REAL SYMMETRIC matrix to a
  18. C symmetric tridiagonal matrix using and accumulating
  19. C orthogonal similarity transformations.
  20. C
  21. C On Input
  22. C
  23. C NM must be set to the row dimension of the two-dimensional
  24. C array parameters, A and Z, as declared in the calling
  25. C program dimension statement. NM is an INTEGER variable.
  26. C
  27. C N is the order of the matrix A. N is an INTEGER variable.
  28. C N must be less than or equal to NM.
  29. C
  30. C A contains the real symmetric input matrix. Only the lower
  31. C triangle of the matrix need be supplied. A is a two-
  32. C dimensional REAL array, dimensioned A(NM,N).
  33. C
  34. C On Output
  35. C
  36. C D contains the diagonal elements of the symmetric tridiagonal
  37. C matrix. D is a one-dimensional REAL array, dimensioned D(N).
  38. C
  39. C E contains the subdiagonal elements of the symmetric
  40. C tridiagonal matrix in its last N-1 positions. E(1) is set
  41. C to zero. E is a one-dimensional REAL array, dimensioned
  42. C E(N).
  43. C
  44. C Z contains the orthogonal transformation matrix produced in
  45. C the reduction. Z is a two-dimensional REAL array,
  46. C dimensioned Z(NM,N).
  47. C
  48. C A and Z may coincide. If distinct, A is unaltered.
  49. C
  50. C Questions and comments should be directed to B. S. Garbow,
  51. C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
  52. C ------------------------------------------------------------------
  53. C
  54. C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
  55. C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
  56. C system Routines - EISPACK Guide, Springer-Verlag,
  57. C 1976.
  58. C***ROUTINES CALLED (NONE)
  59. C***REVISION HISTORY (YYMMDD)
  60. C 760101 DATE WRITTEN
  61. C 890831 Modified array declarations. (WRB)
  62. C 890831 REVISION DATE from Version 3.2
  63. C 891214 Prologue converted to Version 4.0 format. (BAB)
  64. C 920501 Reformatted the REFERENCES section. (WRB)
  65. C***END PROLOGUE TRED2
  66. C
  67. INTEGER I,J,K,L,N,II,NM,JP1
  68. REAL A(NM,*),D(*),E(*),Z(NM,*)
  69. REAL F,G,H,HH,SCALE
  70. C
  71. C***FIRST EXECUTABLE STATEMENT TRED2
  72. DO 100 I = 1, N
  73. C
  74. DO 100 J = 1, I
  75. Z(I,J) = A(I,J)
  76. 100 CONTINUE
  77. C
  78. IF (N .EQ. 1) GO TO 320
  79. C .......... FOR I=N STEP -1 UNTIL 2 DO -- ..........
  80. DO 300 II = 2, N
  81. I = N + 2 - II
  82. L = I - 1
  83. H = 0.0E0
  84. SCALE = 0.0E0
  85. IF (L .LT. 2) GO TO 130
  86. C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
  87. DO 120 K = 1, L
  88. 120 SCALE = SCALE + ABS(Z(I,K))
  89. C
  90. IF (SCALE .NE. 0.0E0) GO TO 140
  91. 130 E(I) = Z(I,L)
  92. GO TO 290
  93. C
  94. 140 DO 150 K = 1, L
  95. Z(I,K) = Z(I,K) / SCALE
  96. H = H + Z(I,K) * Z(I,K)
  97. 150 CONTINUE
  98. C
  99. F = Z(I,L)
  100. G = -SIGN(SQRT(H),F)
  101. E(I) = SCALE * G
  102. H = H - F * G
  103. Z(I,L) = F - G
  104. F = 0.0E0
  105. C
  106. DO 240 J = 1, L
  107. Z(J,I) = Z(I,J) / H
  108. G = 0.0E0
  109. C .......... FORM ELEMENT OF A*U ..........
  110. DO 180 K = 1, J
  111. 180 G = G + Z(J,K) * Z(I,K)
  112. C
  113. JP1 = J + 1
  114. IF (L .LT. JP1) GO TO 220
  115. C
  116. DO 200 K = JP1, L
  117. 200 G = G + Z(K,J) * Z(I,K)
  118. C .......... FORM ELEMENT OF P ..........
  119. 220 E(J) = G / H
  120. F = F + E(J) * Z(I,J)
  121. 240 CONTINUE
  122. C
  123. HH = F / (H + H)
  124. C .......... FORM REDUCED A ..........
  125. DO 260 J = 1, L
  126. F = Z(I,J)
  127. G = E(J) - HH * F
  128. E(J) = G
  129. C
  130. DO 260 K = 1, J
  131. Z(J,K) = Z(J,K) - F * E(K) - G * Z(I,K)
  132. 260 CONTINUE
  133. C
  134. 290 D(I) = H
  135. 300 CONTINUE
  136. C
  137. 320 D(1) = 0.0E0
  138. E(1) = 0.0E0
  139. C .......... ACCUMULATION OF TRANSFORMATION MATRICES ..........
  140. DO 500 I = 1, N
  141. L = I - 1
  142. IF (D(I) .EQ. 0.0E0) GO TO 380
  143. C
  144. DO 360 J = 1, L
  145. G = 0.0E0
  146. C
  147. DO 340 K = 1, L
  148. 340 G = G + Z(I,K) * Z(K,J)
  149. C
  150. DO 360 K = 1, L
  151. Z(K,J) = Z(K,J) - G * Z(K,I)
  152. 360 CONTINUE
  153. C
  154. 380 D(I) = Z(I,I)
  155. Z(I,I) = 1.0E0
  156. IF (L .LT. 1) GO TO 500
  157. C
  158. DO 400 J = 1, L
  159. Z(I,J) = 0.0E0
  160. Z(J,I) = 0.0E0
  161. 400 CONTINUE
  162. C
  163. 500 CONTINUE
  164. C
  165. RETURN
  166. END