tridib.f 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306
  1. *DECK TRIDIB
  2. SUBROUTINE TRIDIB (N, EPS1, D, E, E2, LB, UB, M11, M, W, IND,
  3. + IERR, RV4, RV5)
  4. C***BEGIN PROLOGUE TRIDIB
  5. C***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
  6. C in a given interval using Sturm sequencing.
  7. C***LIBRARY SLATEC (EISPACK)
  8. C***CATEGORY D4A5, D4C2A
  9. C***TYPE SINGLE PRECISION (TRIDIB-S)
  10. C***KEYWORDS EIGENVALUES OF A REAL SYMMETRIC MATRIX, EISPACK
  11. C***AUTHOR Smith, B. T., et al.
  12. C***DESCRIPTION
  13. C
  14. C This subroutine is a translation of the ALGOL procedure BISECT,
  15. C NUM. MATH. 9, 386-393(1967) by Barth, Martin, and Wilkinson.
  16. C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 249-256(1971).
  17. C
  18. C This subroutine finds those eigenvalues of a TRIDIAGONAL
  19. C SYMMETRIC matrix between specified boundary indices,
  20. C using bisection.
  21. C
  22. C On Input
  23. C
  24. C N is the order of the matrix. N is an INTEGER variable.
  25. C
  26. C EPS1 is an absolute error tolerance for the computed eigen-
  27. C values. If the input EPS1 is non-positive, it is reset for
  28. C each submatrix to a default value, namely, minus the product
  29. C of the relative machine precision and the 1-norm of the
  30. C submatrix. EPS1 is a REAL variable.
  31. C
  32. C D contains the diagonal elements of the symmetric tridiagonal
  33. C matrix. D is a one-dimensional REAL array, dimensioned D(N).
  34. C
  35. C E contains the subdiagonal elements of the symmetric
  36. C tridiagonal matrix in its last N-1 positions. E(1) is
  37. C arbitrary. E is a one-dimensional REAL array, dimensioned
  38. C E(N).
  39. C
  40. C E2 contains the squares of the corresponding elements of E.
  41. C E2(1) is arbitrary. E2 is a one-dimensional REAL array,
  42. C dimensioned E2(N).
  43. C
  44. C M11 specifies the lower boundary index for the set of desired
  45. C eigenvalues. M11 is an INTEGER variable.
  46. C
  47. C M specifies the number of eigenvalues desired. The upper
  48. C boundary index M22 is then obtained as M22=M11+M-1.
  49. C M is an INTEGER variable.
  50. C
  51. C On Output
  52. C
  53. C EPS1 is unaltered unless it has been reset to its
  54. C (last) default value.
  55. C
  56. C D and E are unaltered.
  57. C
  58. C Elements of E2, corresponding to elements of E regarded
  59. C as negligible, have been replaced by zero causing the
  60. C matrix to split into a direct sum of submatrices.
  61. C E2(1) is also set to zero.
  62. C
  63. C LB and UB define an interval containing exactly the desired
  64. C eigenvalues. LB and UB are REAL variables.
  65. C
  66. C W contains, in its first M positions, the eigenvalues
  67. C between indices M11 and M22 in ascending order.
  68. C W is a one-dimensional REAL array, dimensioned W(M).
  69. C
  70. C IND contains in its first M positions the submatrix indices
  71. C associated with the corresponding eigenvalues in W --
  72. C 1 for eigenvalues belonging to the first submatrix from
  73. C the top, 2 for those belonging to the second submatrix, etc.
  74. C IND is an one-dimensional INTEGER array, dimensioned IND(M).
  75. C
  76. C IERR is an INTEGER flag set to
  77. C Zero for normal return,
  78. C 3*N+1 if multiple eigenvalues at index M11 make
  79. C unique selection of LB impossible,
  80. C 3*N+2 if multiple eigenvalues at index M22 make
  81. C unique selection of UB impossible.
  82. C
  83. C RV4 and RV5 are one-dimensional REAL arrays used for temporary
  84. C storage of the lower and upper bounds for the eigenvalues in
  85. C the bisection process. RV4 and RV5 are dimensioned RV4(N)
  86. C and RV5(N).
  87. C
  88. C Note that subroutine TQL1, IMTQL1, or TQLRAT is generally faster
  89. C than TRIDIB, if more than N/4 eigenvalues are to be found.
  90. C
  91. C Questions and comments should be directed to B. S. Garbow,
  92. C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
  93. C ------------------------------------------------------------------
  94. C
  95. C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
  96. C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
  97. C system Routines - EISPACK Guide, Springer-Verlag,
  98. C 1976.
  99. C***ROUTINES CALLED R1MACH
  100. C***REVISION HISTORY (YYMMDD)
  101. C 760101 DATE WRITTEN
  102. C 890531 Changed all specific intrinsics to generic. (WRB)
  103. C 890531 REVISION DATE from Version 3.2
  104. C 891214 Prologue converted to Version 4.0 format. (BAB)
  105. C 920501 Reformatted the REFERENCES section. (WRB)
  106. C***END PROLOGUE TRIDIB
  107. C
  108. INTEGER I,J,K,L,M,N,P,Q,R,S,II,M1,M2,M11,M22,TAG,IERR,ISTURM
  109. REAL D(*),E(*),E2(*),W(*),RV4(*),RV5(*)
  110. REAL U,V,LB,T1,T2,UB,XU,X0,X1,EPS1,MACHEP,S1,S2
  111. INTEGER IND(*)
  112. LOGICAL FIRST
  113. C
  114. SAVE FIRST, MACHEP
  115. DATA FIRST /.TRUE./
  116. C***FIRST EXECUTABLE STATEMENT TRIDIB
  117. IF (FIRST) THEN
  118. MACHEP = R1MACH(4)
  119. ENDIF
  120. FIRST = .FALSE.
  121. C
  122. IERR = 0
  123. TAG = 0
  124. XU = D(1)
  125. X0 = D(1)
  126. U = 0.0E0
  127. C .......... LOOK FOR SMALL SUB-DIAGONAL ENTRIES AND DETERMINE AN
  128. C INTERVAL CONTAINING ALL THE EIGENVALUES ..........
  129. DO 40 I = 1, N
  130. X1 = U
  131. U = 0.0E0
  132. IF (I .NE. N) U = ABS(E(I+1))
  133. XU = MIN(D(I)-(X1+U),XU)
  134. X0 = MAX(D(I)+(X1+U),X0)
  135. IF (I .EQ. 1) GO TO 20
  136. S1 = ABS(D(I)) + ABS(D(I-1))
  137. S2 = S1 + ABS(E(I))
  138. IF (S2 .GT. S1) GO TO 40
  139. 20 E2(I) = 0.0E0
  140. 40 CONTINUE
  141. C
  142. X1 = MAX(ABS(XU),ABS(X0)) * MACHEP * N
  143. XU = XU - X1
  144. T1 = XU
  145. X0 = X0 + X1
  146. T2 = X0
  147. C .......... DETERMINE AN INTERVAL CONTAINING EXACTLY
  148. C THE DESIRED EIGENVALUES ..........
  149. P = 1
  150. Q = N
  151. M1 = M11 - 1
  152. IF (M1 .EQ. 0) GO TO 75
  153. ISTURM = 1
  154. 50 V = X1
  155. X1 = XU + (X0 - XU) * 0.5E0
  156. IF (X1 .EQ. V) GO TO 980
  157. GO TO 320
  158. 60 IF (S - M1) 65, 73, 70
  159. 65 XU = X1
  160. GO TO 50
  161. 70 X0 = X1
  162. GO TO 50
  163. 73 XU = X1
  164. T1 = X1
  165. 75 M22 = M1 + M
  166. IF (M22 .EQ. N) GO TO 90
  167. X0 = T2
  168. ISTURM = 2
  169. GO TO 50
  170. 80 IF (S - M22) 65, 85, 70
  171. 85 T2 = X1
  172. 90 Q = 0
  173. R = 0
  174. C .......... ESTABLISH AND PROCESS NEXT SUBMATRIX, REFINING
  175. C INTERVAL BY THE GERSCHGORIN BOUNDS ..........
  176. 100 IF (R .EQ. M) GO TO 1001
  177. TAG = TAG + 1
  178. P = Q + 1
  179. XU = D(P)
  180. X0 = D(P)
  181. U = 0.0E0
  182. C
  183. DO 120 Q = P, N
  184. X1 = U
  185. U = 0.0E0
  186. V = 0.0E0
  187. IF (Q .EQ. N) GO TO 110
  188. U = ABS(E(Q+1))
  189. V = E2(Q+1)
  190. 110 XU = MIN(D(Q)-(X1+U),XU)
  191. X0 = MAX(D(Q)+(X1+U),X0)
  192. IF (V .EQ. 0.0E0) GO TO 140
  193. 120 CONTINUE
  194. C
  195. 140 X1 = MAX(ABS(XU),ABS(X0)) * MACHEP
  196. IF (EPS1 .LE. 0.0E0) EPS1 = -X1
  197. IF (P .NE. Q) GO TO 180
  198. C .......... CHECK FOR ISOLATED ROOT WITHIN INTERVAL ..........
  199. IF (T1 .GT. D(P) .OR. D(P) .GE. T2) GO TO 940
  200. M1 = P
  201. M2 = P
  202. RV5(P) = D(P)
  203. GO TO 900
  204. 180 X1 = X1 * (Q-P+1)
  205. LB = MAX(T1,XU-X1)
  206. UB = MIN(T2,X0+X1)
  207. X1 = LB
  208. ISTURM = 3
  209. GO TO 320
  210. 200 M1 = S + 1
  211. X1 = UB
  212. ISTURM = 4
  213. GO TO 320
  214. 220 M2 = S
  215. IF (M1 .GT. M2) GO TO 940
  216. C .......... FIND ROOTS BY BISECTION ..........
  217. X0 = UB
  218. ISTURM = 5
  219. C
  220. DO 240 I = M1, M2
  221. RV5(I) = UB
  222. RV4(I) = LB
  223. 240 CONTINUE
  224. C .......... LOOP FOR K-TH EIGENVALUE
  225. C FOR K=M2 STEP -1 UNTIL M1 DO --
  226. C (-DO- NOT USED TO LEGALIZE -COMPUTED GO TO-) ..........
  227. K = M2
  228. 250 XU = LB
  229. C .......... FOR I=K STEP -1 UNTIL M1 DO -- ..........
  230. DO 260 II = M1, K
  231. I = M1 + K - II
  232. IF (XU .GE. RV4(I)) GO TO 260
  233. XU = RV4(I)
  234. GO TO 280
  235. 260 CONTINUE
  236. C
  237. 280 IF (X0 .GT. RV5(K)) X0 = RV5(K)
  238. C .......... NEXT BISECTION STEP ..........
  239. 300 X1 = (XU + X0) * 0.5E0
  240. S1 = ABS(XU) + ABS(X0) + ABS(EPS1)
  241. S2 = S1 + ABS(X0-XU)/2.0E0
  242. IF (S2 .EQ. S1) GO TO 420
  243. C .......... IN-LINE PROCEDURE FOR STURM SEQUENCE ..........
  244. 320 S = P - 1
  245. U = 1.0E0
  246. C
  247. DO 340 I = P, Q
  248. IF (U .NE. 0.0E0) GO TO 325
  249. V = ABS(E(I)) / MACHEP
  250. IF (E2(I) .EQ. 0.0E0) V = 0.0E0
  251. GO TO 330
  252. 325 V = E2(I) / U
  253. 330 U = D(I) - X1 - V
  254. IF (U .LT. 0.0E0) S = S + 1
  255. 340 CONTINUE
  256. C
  257. GO TO (60,80,200,220,360), ISTURM
  258. C .......... REFINE INTERVALS ..........
  259. 360 IF (S .GE. K) GO TO 400
  260. XU = X1
  261. IF (S .GE. M1) GO TO 380
  262. RV4(M1) = X1
  263. GO TO 300
  264. 380 RV4(S+1) = X1
  265. IF (RV5(S) .GT. X1) RV5(S) = X1
  266. GO TO 300
  267. 400 X0 = X1
  268. GO TO 300
  269. C .......... K-TH EIGENVALUE FOUND ..........
  270. 420 RV5(K) = X1
  271. K = K - 1
  272. IF (K .GE. M1) GO TO 250
  273. C .......... ORDER EIGENVALUES TAGGED WITH THEIR
  274. C SUBMATRIX ASSOCIATIONS ..........
  275. 900 S = R
  276. R = R + M2 - M1 + 1
  277. J = 1
  278. K = M1
  279. C
  280. DO 920 L = 1, R
  281. IF (J .GT. S) GO TO 910
  282. IF (K .GT. M2) GO TO 940
  283. IF (RV5(K) .GE. W(L)) GO TO 915
  284. C
  285. DO 905 II = J, S
  286. I = L + S - II
  287. W(I+1) = W(I)
  288. IND(I+1) = IND(I)
  289. 905 CONTINUE
  290. C
  291. 910 W(L) = RV5(K)
  292. IND(L) = TAG
  293. K = K + 1
  294. GO TO 920
  295. 915 J = J + 1
  296. 920 CONTINUE
  297. C
  298. 940 IF (Q .LT. N) GO TO 100
  299. GO TO 1001
  300. C .......... SET ERROR -- INTERVAL CANNOT BE FOUND CONTAINING
  301. C EXACTLY THE DESIRED EIGENVALUES ..........
  302. 980 IERR = 3 * N + ISTURM
  303. 1001 LB = T1
  304. UB = T2
  305. RETURN
  306. END