123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405 |
- *DECK TSTURM
- SUBROUTINE TSTURM (NM, N, EPS1, D, E, E2, LB, UB, MM, M, W, Z,
- + IERR, RV1, RV2, RV3, RV4, RV5, RV6)
- C***BEGIN PROLOGUE TSTURM
- C***PURPOSE Find those eigenvalues of a symmetric tridiagonal matrix
- C in a given interval and their associated eigenvectors by
- C Sturm sequencing.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4A5, D4C2A
- C***TYPE SINGLE PRECISION (TSTURM-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine finds those eigenvalues of a TRIDIAGONAL
- C SYMMETRIC matrix which lie in a specified interval and their
- C associated eigenvectors, using bisection and inverse iteration.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, Z, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C EPS1 is an absolute error tolerance for the computed eigen-
- C values. It should be chosen so that the accuracy of these
- C eigenvalues is commensurate with relative perturbations of
- C the order of the relative machine precision in the matrix
- C elements. If the input EPS1 is non-positive, it is reset
- C for each submatrix to a default value, namely, minus the
- C product of the relative machine precision and the 1-norm of
- C the submatrix. EPS1 is a REAL variable.
- C
- C D contains the diagonal elements of the symmetric tridiagonal
- C matrix. D is a one-dimensional REAL array, dimensioned D(N).
- C
- C E contains the subdiagonal elements of the symmetric
- C tridiagonal matrix in its last N-1 positions. E(1) is
- C arbitrary. E is a one-dimensional REAL array, dimensioned
- C E(N).
- C
- C E2 contains the squares of the corresponding elements of E.
- C E2(1) is arbitrary. E2 is a one-dimensional REAL array,
- C dimensioned E2(N).
- C
- C LB and UB define the interval to be searched for eigenvalues.
- C If LB is not less than UB, no eigenvalues will be found.
- C LB and UB are REAL variables.
- C
- C MM should be set to an upper bound for the number of
- C eigenvalues in the interval. MM is an INTEGER variable.
- C WARNING - If more than MM eigenvalues are determined to lie
- C in the interval, an error return is made with no values or
- C vectors found.
- C
- C On Output
- C
- C EPS1 is unaltered unless it has been reset to its
- C (last) default value.
- C
- C D and E are unaltered.
- C
- C Elements of E2, corresponding to elements of E regarded as
- C negligible, have been replaced by zero causing the matrix to
- C split into a direct sum of submatrices. E2(1) is also set
- C to zero.
- C
- C M is the number of eigenvalues determined to lie in (LB,UB).
- C M is an INTEGER variable.
- C
- C W contains the M eigenvalues in ascending order if the matrix
- C does not split. If the matrix splits, the eigenvalues are
- C in ascending order for each submatrix. If a vector error
- C exit is made, W contains those values already found. W is a
- C one-dimensional REAL array, dimensioned W(MM).
- C
- C Z contains the associated set of orthonormal eigenvectors.
- C If an error exit is made, Z contains those vectors already
- C found. Z is a one-dimensional REAL array, dimensioned
- C Z(NM,MM).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C 3*N+1 if M exceeds MM no eigenvalues or eigenvectors
- C are computed,
- C 4*N+J if the eigenvector corresponding to the J-th
- C eigenvalue fails to converge in 5 iterations, then
- C the eigenvalues and eigenvectors in W and Z should
- C be correct for indices 1, 2, ..., J-1.
- C
- C RV1, RV2, RV3, RV4, RV5, and RV6 are temporary storage arrays,
- C dimensioned RV1(N), RV2(N), RV3(N), RV4(N), RV5(N), and
- C RV6(N).
- C
- C The ALGOL procedure STURMCNT contained in TRISTURM
- C appears in TSTURM in-line.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE TSTURM
- C
- INTEGER I,J,K,M,N,P,Q,R,S,II,IP,JJ,MM,M1,M2,NM,ITS
- INTEGER IERR,GROUP,ISTURM
- REAL D(*),E(*),E2(*),W(*),Z(NM,*)
- REAL RV1(*),RV2(*),RV3(*),RV4(*),RV5(*),RV6(*)
- REAL U,V,LB,T1,T2,UB,UK,XU,X0,X1,EPS1,EPS2,EPS3,EPS4
- REAL NORM,MACHEP,S1,S2
- LOGICAL FIRST
- C
- SAVE FIRST, MACHEP
- DATA FIRST /.TRUE./
- C***FIRST EXECUTABLE STATEMENT TSTURM
- IF (FIRST) THEN
- MACHEP = R1MACH(4)
- ENDIF
- FIRST = .FALSE.
- C
- IERR = 0
- T1 = LB
- T2 = UB
- C .......... LOOK FOR SMALL SUB-DIAGONAL ENTRIES ..........
- DO 40 I = 1, N
- IF (I .EQ. 1) GO TO 20
- S1 = ABS(D(I)) + ABS(D(I-1))
- S2 = S1 + ABS(E(I))
- IF (S2 .GT. S1) GO TO 40
- 20 E2(I) = 0.0E0
- 40 CONTINUE
- C .......... DETERMINE THE NUMBER OF EIGENVALUES
- C IN THE INTERVAL ..........
- P = 1
- Q = N
- X1 = UB
- ISTURM = 1
- GO TO 320
- 60 M = S
- X1 = LB
- ISTURM = 2
- GO TO 320
- 80 M = M - S
- IF (M .GT. MM) GO TO 980
- Q = 0
- R = 0
- C .......... ESTABLISH AND PROCESS NEXT SUBMATRIX, REFINING
- C INTERVAL BY THE GERSCHGORIN BOUNDS ..........
- 100 IF (R .EQ. M) GO TO 1001
- P = Q + 1
- XU = D(P)
- X0 = D(P)
- U = 0.0E0
- C
- DO 120 Q = P, N
- X1 = U
- U = 0.0E0
- V = 0.0E0
- IF (Q .EQ. N) GO TO 110
- U = ABS(E(Q+1))
- V = E2(Q+1)
- 110 XU = MIN(D(Q)-(X1+U),XU)
- X0 = MAX(D(Q)+(X1+U),X0)
- IF (V .EQ. 0.0E0) GO TO 140
- 120 CONTINUE
- C
- 140 X1 = MAX(ABS(XU),ABS(X0)) * MACHEP
- IF (EPS1 .LE. 0.0E0) EPS1 = -X1
- IF (P .NE. Q) GO TO 180
- C .......... CHECK FOR ISOLATED ROOT WITHIN INTERVAL ..........
- IF (T1 .GT. D(P) .OR. D(P) .GE. T2) GO TO 940
- R = R + 1
- C
- DO 160 I = 1, N
- 160 Z(I,R) = 0.0E0
- C
- W(R) = D(P)
- Z(P,R) = 1.0E0
- GO TO 940
- 180 X1 = X1 * (Q-P+1)
- LB = MAX(T1,XU-X1)
- UB = MIN(T2,X0+X1)
- X1 = LB
- ISTURM = 3
- GO TO 320
- 200 M1 = S + 1
- X1 = UB
- ISTURM = 4
- GO TO 320
- 220 M2 = S
- IF (M1 .GT. M2) GO TO 940
- C .......... FIND ROOTS BY BISECTION ..........
- X0 = UB
- ISTURM = 5
- C
- DO 240 I = M1, M2
- RV5(I) = UB
- RV4(I) = LB
- 240 CONTINUE
- C .......... LOOP FOR K-TH EIGENVALUE
- C FOR K=M2 STEP -1 UNTIL M1 DO --
- C (-DO- NOT USED TO LEGALIZE -COMPUTED GO TO-) ..........
- K = M2
- 250 XU = LB
- C .......... FOR I=K STEP -1 UNTIL M1 DO -- ..........
- DO 260 II = M1, K
- I = M1 + K - II
- IF (XU .GE. RV4(I)) GO TO 260
- XU = RV4(I)
- GO TO 280
- 260 CONTINUE
- C
- 280 IF (X0 .GT. RV5(K)) X0 = RV5(K)
- C .......... NEXT BISECTION STEP ..........
- 300 X1 = (XU + X0) * 0.5E0
- S1 = 2.0E0*(ABS(XU) + ABS(X0) + ABS(EPS1))
- S2 = S1 + ABS(X0 - XU)
- IF (S2 .EQ. S1) GO TO 420
- C .......... IN-LINE PROCEDURE FOR STURM SEQUENCE ..........
- 320 S = P - 1
- U = 1.0E0
- C
- DO 340 I = P, Q
- IF (U .NE. 0.0E0) GO TO 325
- V = ABS(E(I)) / MACHEP
- IF (E2(I) .EQ. 0.0E0) V = 0.0E0
- GO TO 330
- 325 V = E2(I) / U
- 330 U = D(I) - X1 - V
- IF (U .LT. 0.0E0) S = S + 1
- 340 CONTINUE
- C
- GO TO (60,80,200,220,360), ISTURM
- C .......... REFINE INTERVALS ..........
- 360 IF (S .GE. K) GO TO 400
- XU = X1
- IF (S .GE. M1) GO TO 380
- RV4(M1) = X1
- GO TO 300
- 380 RV4(S+1) = X1
- IF (RV5(S) .GT. X1) RV5(S) = X1
- GO TO 300
- 400 X0 = X1
- GO TO 300
- C .......... K-TH EIGENVALUE FOUND ..........
- 420 RV5(K) = X1
- K = K - 1
- IF (K .GE. M1) GO TO 250
- C .......... FIND VECTORS BY INVERSE ITERATION ..........
- NORM = ABS(D(P))
- IP = P + 1
- C
- DO 500 I = IP, Q
- 500 NORM = MAX(NORM, ABS(D(I)) + ABS(E(I)))
- C .......... EPS2 IS THE CRITERION FOR GROUPING,
- C EPS3 REPLACES ZERO PIVOTS AND EQUAL
- C ROOTS ARE MODIFIED BY EPS3,
- C EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW ..........
- EPS2 = 1.0E-3 * NORM
- UK = SQRT(REAL(Q-P+5))
- EPS3 = UK * MACHEP * NORM
- EPS4 = UK * EPS3
- UK = EPS4 / SQRT(UK)
- GROUP = 0
- S = P
- C
- DO 920 K = M1, M2
- R = R + 1
- ITS = 1
- W(R) = RV5(K)
- X1 = RV5(K)
- C .......... LOOK FOR CLOSE OR COINCIDENT ROOTS ..........
- IF (K .EQ. M1) GO TO 520
- IF (X1 - X0 .GE. EPS2) GROUP = -1
- GROUP = GROUP + 1
- IF (X1 .LE. X0) X1 = X0 + EPS3
- C .......... ELIMINATION WITH INTERCHANGES AND
- C INITIALIZATION OF VECTOR ..........
- 520 V = 0.0E0
- C
- DO 580 I = P, Q
- RV6(I) = UK
- IF (I .EQ. P) GO TO 560
- IF (ABS(E(I)) .LT. ABS(U)) GO TO 540
- XU = U / E(I)
- RV4(I) = XU
- RV1(I-1) = E(I)
- RV2(I-1) = D(I) - X1
- RV3(I-1) = 0.0E0
- IF (I .NE. Q) RV3(I-1) = E(I+1)
- U = V - XU * RV2(I-1)
- V = -XU * RV3(I-1)
- GO TO 580
- 540 XU = E(I) / U
- RV4(I) = XU
- RV1(I-1) = U
- RV2(I-1) = V
- RV3(I-1) = 0.0E0
- 560 U = D(I) - X1 - XU * V
- IF (I .NE. Q) V = E(I+1)
- 580 CONTINUE
- C
- IF (U .EQ. 0.0E0) U = EPS3
- RV1(Q) = U
- RV2(Q) = 0.0E0
- RV3(Q) = 0.0E0
- C .......... BACK SUBSTITUTION
- C FOR I=Q STEP -1 UNTIL P DO -- ..........
- 600 DO 620 II = P, Q
- I = P + Q - II
- RV6(I) = (RV6(I) - U * RV2(I) - V * RV3(I)) / RV1(I)
- V = U
- U = RV6(I)
- 620 CONTINUE
- C .......... ORTHOGONALIZE WITH RESPECT TO PREVIOUS
- C MEMBERS OF GROUP ..........
- IF (GROUP .EQ. 0) GO TO 700
- C
- DO 680 JJ = 1, GROUP
- J = R - GROUP - 1 + JJ
- XU = 0.0E0
- C
- DO 640 I = P, Q
- 640 XU = XU + RV6(I) * Z(I,J)
- C
- DO 660 I = P, Q
- 660 RV6(I) = RV6(I) - XU * Z(I,J)
- C
- 680 CONTINUE
- C
- 700 NORM = 0.0E0
- C
- DO 720 I = P, Q
- 720 NORM = NORM + ABS(RV6(I))
- C
- IF (NORM .GE. 1.0E0) GO TO 840
- C .......... FORWARD SUBSTITUTION ..........
- IF (ITS .EQ. 5) GO TO 960
- IF (NORM .NE. 0.0E0) GO TO 740
- RV6(S) = EPS4
- S = S + 1
- IF (S .GT. Q) S = P
- GO TO 780
- 740 XU = EPS4 / NORM
- C
- DO 760 I = P, Q
- 760 RV6(I) = RV6(I) * XU
- C .......... ELIMINATION OPERATIONS ON NEXT VECTOR
- C ITERATE ..........
- 780 DO 820 I = IP, Q
- U = RV6(I)
- C .......... IF RV1(I-1) .EQ. E(I), A ROW INTERCHANGE
- C WAS PERFORMED EARLIER IN THE
- C TRIANGULARIZATION PROCESS ..........
- IF (RV1(I-1) .NE. E(I)) GO TO 800
- U = RV6(I-1)
- RV6(I-1) = RV6(I)
- 800 RV6(I) = U - RV4(I) * RV6(I-1)
- 820 CONTINUE
- C
- ITS = ITS + 1
- GO TO 600
- C .......... NORMALIZE SO THAT SUM OF SQUARES IS
- C 1 AND EXPAND TO FULL ORDER ..........
- 840 U = 0.0E0
- C
- DO 860 I = P, Q
- 860 U = U + RV6(I)**2
- C
- XU = 1.0E0 / SQRT(U)
- C
- DO 880 I = 1, N
- 880 Z(I,R) = 0.0E0
- C
- DO 900 I = P, Q
- 900 Z(I,R) = RV6(I) * XU
- C
- X0 = X1
- 920 CONTINUE
- C
- 940 IF (Q .LT. N) GO TO 100
- GO TO 1001
- C .......... SET ERROR -- NON-CONVERGED EIGENVECTOR ..........
- 960 IERR = 4 * N + R
- GO TO 1001
- C .......... SET ERROR -- UNDERESTIMATE OF NUMBER OF
- C EIGENVALUES IN INTERVAL ..........
- 980 IERR = 3 * N + 1
- 1001 LB = T1
- UB = T2
- RETURN
- END
|