123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- *DECK XLEGF
- SUBROUTINE XLEGF (DNU1, NUDIFF, MU1, MU2, THETA, ID, PQA, IPQA,
- 1 IERROR)
- C***BEGIN PROLOGUE XLEGF
- C***PURPOSE Compute normalized Legendre polynomials and associated
- C Legendre functions.
- C***LIBRARY SLATEC
- C***CATEGORY C3A2, C9
- C***TYPE SINGLE PRECISION (XLEGF-S, DXLEGF-D)
- C***KEYWORDS LEGENDRE FUNCTIONS
- C***AUTHOR Smith, John M., (NBS and George Mason University)
- C***DESCRIPTION
- C
- C XLEGF: Extended-range Single-precision Legendre Functions
- C
- C A feature of the XLEGF subroutine for Legendre functions is
- C the use of extended-range arithmetic, a software extension of
- C ordinary floating-point arithmetic that greatly increases the
- C exponent range of the representable numbers. This avoids the
- C need for scaling the solutions to lie within the exponent range
- C of the most restrictive manufacturer's hardware. The increased
- C exponent range is achieved by allocating an integer storage
- C location together with each floating-point storage location.
- C
- C The interpretation of the pair (X,I) where X is floating-point
- C and I is integer is X*(IR**I) where IR is the internal radix of
- C the computer arithmetic.
- C
- C This subroutine computes one of the following vectors:
- C
- C 1. Legendre function of the first kind of negative order, either
- C a. P(-MU1,NU,X), P(-MU1-1,NU,X), ..., P(-MU2,NU,X) or
- C b. P(-MU,NU1,X), P(-MU,NU1+1,X), ..., P(-MU,NU2,X)
- C 2. Legendre function of the second kind, either
- C a. Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X) or
- C b. Q(MU,NU1,X), Q(MU,NU1+1,X), ..., Q(MU,NU2,X)
- C 3. Legendre function of the first kind of positive order, either
- C a. P(MU1,NU,X), P(MU1+1,NU,X), ..., P(MU2,NU,X) or
- C b. P(MU,NU1,X), P(MU,NU1+1,X), ..., P(MU,NU2,X)
- C 4. Normalized Legendre polynomials, either
- C a. PN(MU1,NU,X), PN(MU1+1,NU,X), ..., PN(MU2,NU,X) or
- C b. PN(MU,NU1,X), PN(MU,NU1+1,X), ..., PN(MU,NU2,X)
- C
- C where X = COS(THETA).
- C
- C The input values to XLEGF are DNU1, NUDIFF, MU1, MU2, THETA,
- C and ID. These must satisfy
- C
- C DNU1 is REAL and greater than or equal to -0.5;
- C NUDIFF is INTEGER and non-negative;
- C MU1 is INTEGER and non-negative;
- C MU2 is INTEGER and greater than or equal to MU1;
- C THETA is REAL and in the half-open interval (0,PI/2];
- C ID is INTEGER and equal to 1, 2, 3 or 4;
- C
- C and additionally either NUDIFF = 0 or MU2 = MU1.
- C
- C If ID=1 and NUDIFF=0, a vector of type 1a above is computed
- C with NU=DNU1.
- C
- C If ID=1 and MU1=MU2, a vector of type 1b above is computed
- C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
- C
- C If ID=2 and NUDIFF=0, a vector of type 2a above is computed
- C with NU=DNU1.
- C
- C If ID=2 and MU1=MU2, a vector of type 2b above is computed
- C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
- C
- C If ID=3 and NUDIFF=0, a vector of type 3a above is computed
- C with NU=DNU1.
- C
- C If ID=3 and MU1=MU2, a vector of type 3b above is computed
- C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
- C
- C If ID=4 and NUDIFF=0, a vector of type 4a above is computed
- C with NU=DNU1.
- C
- C If ID=4 and MU1=MU2, a vector of type 4b above is computed
- C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
- C
- C In each case the vector of computed Legendre function values
- C is returned in the extended-range vector (PQA(I),IPQA(I)). The
- C length of this vector is either MU2-MU1+1 or NUDIFF+1.
- C
- C Where possible, XLEGF returns IPQA(I) as zero. In this case the
- C value of the Legendre function is contained entirely in PQA(I),
- C so it can be used in subsequent computations without further
- C consideration of extended-range arithmetic. If IPQA(I) is nonzero,
- C then the value of the Legendre function is not representable in
- C floating-point because of underflow or overflow. The program that
- C calls XLEGF must test IPQA(I) to ensure correct usage.
- C
- C IERROR is an error indicator. If no errors are detected, IERROR=0
- C when control returns to the calling routine. If an error is detected,
- C IERROR is returned as nonzero. The calling routine must check the
- C value of IERROR.
- C
- C If IERROR=110 or 111, invalid input was provided to XLEGF.
- C If IERROR=101,102,103, or 104, invalid input was provided to XSET.
- C If IERROR=105 or 106, an internal consistency error occurred in
- C XSET (probably due to a software malfunction in the library routine
- C I1MACH).
- C If IERROR=107, an overflow or underflow of an extended-range number
- C was detected in XADJ.
- C If IERROR=108, an overflow or underflow of an extended-range number
- C was detected in XC210.
- C
- C***SEE ALSO XSET
- C***REFERENCES Olver and Smith, Associated Legendre Functions on the
- C Cut, J Comp Phys, v 51, n 3, Sept 1983, pp 502--518.
- C Smith, Olver and Lozier, Extended-Range Arithmetic and
- C Normalized Legendre Polynomials, ACM Trans on Math
- C Softw, v 7, n 1, March 1981, pp 93--105.
- C***ROUTINES CALLED XERMSG, XPMU, XPMUP, XPNRM, XPQNU, XQMU, XQNU,
- C XRED, XSET
- C***REVISION HISTORY (YYMMDD)
- C 820728 DATE WRITTEN
- C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
- C 901019 Revisions to prologue. (DWL and WRB)
- C 901106 Changed all specific intrinsics to generic. (WRB)
- C Corrected order of sections in prologue and added TYPE
- C section. (WRB)
- C CALLs to XERROR changed to CALLs to XERMSG. (WRB)
- C 920127 Revised PURPOSE section of prologue. (DWL)
- C***END PROLOGUE XLEGF
- REAL PQA,DNU1,DNU2,SX,THETA,X,PI2
- DIMENSION PQA(*),IPQA(*)
- C
- C***FIRST EXECUTABLE STATEMENT XLEGF
- IERROR=0
- CALL XSET (0, 0, 0.0, 0,IERROR)
- IF (IERROR.NE.0) RETURN
- PI2=2.*ATAN(1.)
- C
- C ZERO OUTPUT ARRAYS
- C
- L=(MU2-MU1)+NUDIFF+1
- DO 290 I=1,L
- PQA(I)=0.
- 290 IPQA(I)=0
- C
- C CHECK FOR VALID INPUT VALUES
- C
- IF(NUDIFF.LT.0) GO TO 400
- IF(DNU1.LT.-.5) GO TO 400
- IF(MU2.LT.MU1) GO TO 400
- IF(MU1.LT.0) GO TO 400
- IF(THETA.LE.0..OR.THETA.GT.PI2) GO TO 420
- IF(ID.LT.1.OR.ID.GT.4) GO TO 400
- IF((MU1.NE.MU2).AND.(NUDIFF.GT.0)) GO TO 400
- C
- C IF DNU1 IS NOT AN INTEGER, NORMALIZED P(MU,DNU,X)
- C CANNOT BE CALCULATED. IF DNU1 IS AN INTEGER AND
- C MU1.GT.DNU2 THEN ALL VALUES OF P(+MU,DNU,X) AND
- C NORMALIZED P(MU,NU,X) WILL BE ZERO.
- C
- DNU2=DNU1+NUDIFF
- IF((ID.EQ.3).AND.(MOD(DNU1,1.).NE.0.)) GO TO 295
- IF((ID.EQ.4).AND.(MOD(DNU1,1.).NE.0.)) GO TO 400
- IF((ID.EQ.3.OR.ID.EQ.4).AND.MU1.GT.DNU2) RETURN
- 295 CONTINUE
- C
- X=COS(THETA)
- SX=1./SIN(THETA)
- IF(ID.EQ.2) GO TO 300
- IF(MU2-MU1.LE.0) GO TO 360
- C
- C FIXED NU, VARIABLE MU
- C CALL XPMU TO CALCULATE P(-MU1,NU,X),....,P(-MU2,NU,X)
- C
- CALL XPMU(DNU1,DNU2,MU1,MU2,THETA,X,SX,ID,PQA,IPQA,IERROR)
- IF (IERROR.NE.0) RETURN
- GO TO 380
- C
- 300 IF(MU2.EQ.MU1) GO TO 320
- C
- C FIXED NU, VARIABLE MU
- C CALL XQMU TO CALCULATE Q(MU1,NU,X),....,Q(MU2,NU,X)
- C
- CALL XQMU(DNU1,DNU2,MU1,MU2,THETA,X,SX,ID,PQA,IPQA,IERROR)
- IF (IERROR.NE.0) RETURN
- GO TO 390
- C
- C FIXED MU, VARIABLE NU
- C CALL XQNU TO CALCULATE Q(MU,DNU1,X),....,Q(MU,DNU2,X)
- C
- 320 CALL XQNU(DNU1,DNU2,MU1,THETA,X,SX,ID,PQA,IPQA,IERROR)
- IF (IERROR.NE.0) RETURN
- GO TO 390
- C
- C FIXED MU, VARIABLE NU
- C CALL XPQNU TO CALCULATE P(-MU,DNU1,X),....,P(-MU,DNU2,X)
- C
- 360 CALL XPQNU(DNU1,DNU2,MU1,THETA,ID,PQA,IPQA,IERROR)
- IF (IERROR.NE.0) RETURN
- C
- C IF ID = 3, TRANSFORM P(-MU,NU,X) VECTOR INTO
- C P(MU,NU,X) VECTOR.
- C
- 380 IF(ID.EQ.3) CALL XPMUP(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
- IF (IERROR.NE.0) RETURN
- C
- C IF ID = 4, TRANSFORM P(-MU,NU,X) VECTOR INTO
- C NORMALIZED P(MU,NU,X) VECTOR.
- C
- IF(ID.EQ.4) CALL XPNRM(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
- IF (IERROR.NE.0) RETURN
- C
- C PLACE RESULTS IN REDUCED FORM IF POSSIBLE
- C AND RETURN TO MAIN PROGRAM.
- C
- 390 DO 395 I=1,L
- CALL XRED(PQA(I),IPQA(I),IERROR)
- IF (IERROR.NE.0) RETURN
- 395 CONTINUE
- RETURN
- C
- C ***** ERROR TERMINATION *****
- C
- 400 CALL XERMSG ('SLATEC', 'XLEGF',
- + 'DNU1, NUDIFF, MU1, MU2, or ID not valid', 110, 1)
- IERROR=110
- RETURN
- 420 CALL XERMSG ('SLATEC', 'XLEGF', 'THETA out of range', 111, 1)
- IERROR=111
- RETURN
- END
|