| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 | /* @(#)s_tanh.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *//* tanhl(x) * Return the Hyperbolic Tangent of x * * Method : *                                      x    -x *                                     e  - e *      0. tanhl(x) is defined to be ----------- *                                      x    -x *                                     e  + e *      1. reduce x to non-negative by tanhl(-x) = -tanhl(x). *      2.  0      <= x <= 2**-57 : tanhl(x) := x*(one+x) *                                               -t *          2**-57 <  x <=  1     : tanhl(x) := -----; t = expm1l(-2x) *                                              t + 2 *                                                    2 *          1      <= x <=  40.0  : tanhl(x) := 1-  ----- ; t=expm1l(2x) *                                                  t + 2 *          40.0   <  x <= INF    : tanhl(x) := 1. * * Special cases: *      tanhl(NaN) is NaN; *      only tanhl(0)=0 is exact for finite argument. */#include "math.h"#include "math_private.h"static const long double one = 1.0, two = 2.0, tiny = 1.0e-4900L;long doubletanhl(long double x){  long double t, z;  u_int32_t jx, ix;  ieee_quad_shape_type u;  /* Words of |x|. */  u.value = x;  jx = u.parts32.mswhi;  ix = jx & 0x7fffffff;  /* x is INF or NaN */  if (ix >= 0x7fff0000)    {      /* for NaN it's not important which branch: tanhl(NaN) = NaN */      if (jx & 0x80000000)	return one / x - one;	/* tanhl(-inf)= -1; */      else	return one / x + one;	/* tanhl(+inf)=+1 */    }  /* |x| < 40 */  if (ix < 0x40044000)    {      if (u.value == 0)	return x;		/* x == +- 0 */      if (ix < 0x3fc60000)	/* |x| < 2^-57 */	return x * (one + tiny); /* tanh(small) = small */      u.parts32.mswhi = ix;	/* Absolute value of x.  */      if (ix >= 0x3fff0000)	{			/* |x| >= 1  */	  t = expm1l (two * u.value);	  z = one - two / (t + two);	}      else	{	  t = expm1l (-two * u.value);	  z = -t / (t + two);	}      /* |x| > 40, return +-1 */    }  else    {      z = one - tiny;		/* raised inexact flag */    }  return (jx & 0x80000000) ? -z : z;}
 |