e_lgamma_r.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. /* @(#)e_lgamma_r.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include <sys/cdefs.h>
  13. //__FBSDID("$FreeBSD$");
  14. /* __ieee754_lgamma_r(x, signgamp)
  15. * Reentrant version of the logarithm of the Gamma function
  16. * with user provide pointer for the sign of Gamma(x).
  17. *
  18. * Method:
  19. * 1. Argument Reduction for 0 < x <= 8
  20. * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
  21. * reduce x to a number in [1.5,2.5] by
  22. * lgamma(1+s) = log(s) + lgamma(s)
  23. * for example,
  24. * lgamma(7.3) = log(6.3) + lgamma(6.3)
  25. * = log(6.3*5.3) + lgamma(5.3)
  26. * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
  27. * 2. Polynomial approximation of lgamma around its
  28. * minimun ymin=1.461632144968362245 to maintain monotonicity.
  29. * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
  30. * Let z = x-ymin;
  31. * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
  32. * where
  33. * poly(z) is a 14 degree polynomial.
  34. * 2. Rational approximation in the primary interval [2,3]
  35. * We use the following approximation:
  36. * s = x-2.0;
  37. * lgamma(x) = 0.5*s + s*P(s)/Q(s)
  38. * with accuracy
  39. * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
  40. * Our algorithms are based on the following observation
  41. *
  42. * zeta(2)-1 2 zeta(3)-1 3
  43. * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
  44. * 2 3
  45. *
  46. * where Euler = 0.5771... is the Euler constant, which is very
  47. * close to 0.5.
  48. *
  49. * 3. For x>=8, we have
  50. * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
  51. * (better formula:
  52. * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
  53. * Let z = 1/x, then we approximation
  54. * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
  55. * by
  56. * 3 5 11
  57. * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
  58. * where
  59. * |w - f(z)| < 2**-58.74
  60. *
  61. * 4. For negative x, since (G is gamma function)
  62. * -x*G(-x)*G(x) = pi/sin(pi*x),
  63. * we have
  64. * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
  65. * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
  66. * Hence, for x<0, signgam = sign(sin(pi*x)) and
  67. * lgamma(x) = log(|Gamma(x)|)
  68. * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
  69. * Note: one should avoid compute pi*(-x) directly in the
  70. * computation of sin(pi*(-x)).
  71. *
  72. * 5. Special Cases
  73. * lgamma(2+s) ~ s*(1-Euler) for tiny s
  74. * lgamma(1) = lgamma(2) = 0
  75. * lgamma(x) ~ -log(|x|) for tiny x
  76. * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
  77. * lgamma(inf) = inf
  78. * lgamma(-inf) = inf (bug for bug compatible with C99!?)
  79. */
  80. #include <float.h>
  81. #include <openlibm_math.h>
  82. #include "math_private.h"
  83. static const volatile double vzero = 0;
  84. static const double
  85. zero= 0.00000000000000000000e+00,
  86. half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
  87. one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
  88. pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
  89. a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
  90. a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
  91. a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
  92. a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
  93. a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
  94. a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
  95. a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
  96. a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
  97. a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
  98. a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
  99. a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
  100. a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
  101. tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
  102. tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
  103. /* tt = -(tail of tf) */
  104. tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
  105. t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
  106. t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
  107. t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
  108. t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
  109. t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
  110. t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
  111. t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
  112. t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
  113. t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
  114. t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
  115. t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
  116. t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
  117. t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
  118. t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
  119. t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
  120. u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
  121. u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
  122. u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
  123. u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
  124. u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
  125. u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
  126. v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
  127. v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
  128. v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
  129. v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
  130. v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
  131. s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
  132. s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
  133. s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
  134. s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
  135. s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
  136. s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
  137. s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
  138. r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
  139. r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
  140. r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
  141. r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
  142. r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
  143. r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
  144. w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
  145. w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
  146. w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
  147. w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
  148. w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
  149. w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
  150. w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
  151. /*
  152. * Compute sin(pi*x) without actually doing the pi*x multiplication.
  153. * sin_pi(x) is only called for x < 0 and |x| < 2**(p-1) where p is
  154. * the precision of x.
  155. */
  156. static double
  157. sin_pi(double x)
  158. {
  159. volatile double vz;
  160. double y,z;
  161. int n;
  162. y = -x;
  163. vz = y+0x1p52; /* depend on 0 <= y < 0x1p52 */
  164. z = vz-0x1p52; /* rint(y) for the above range */
  165. if (z == y)
  166. return zero;
  167. vz = y+0x1p50;
  168. GET_LOW_WORD(n,vz); /* bits for rounded y (units 0.25) */
  169. z = vz-0x1p50; /* y rounded to a multiple of 0.25 */
  170. if (z > y) {
  171. z -= 0.25; /* adjust to round down */
  172. n--;
  173. }
  174. n &= 7; /* octant of y mod 2 */
  175. y = y - z + n * 0.25; /* y mod 2 */
  176. switch (n) {
  177. case 0: y = __kernel_sin(pi*y,zero,0); break;
  178. case 1:
  179. case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
  180. case 3:
  181. case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
  182. case 5:
  183. case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
  184. default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
  185. }
  186. return -y;
  187. }
  188. double
  189. __ieee754_lgamma_r(double x, int *signgamp)
  190. {
  191. double nadj,p,p1,p2,p3,q,r,t,w,y,z;
  192. int32_t hx;
  193. int i,ix,lx;
  194. EXTRACT_WORDS(hx,lx,x);
  195. /* purge +-Inf and NaNs */
  196. *signgamp = 1;
  197. ix = hx&0x7fffffff;
  198. if(ix>=0x7ff00000) return x*x;
  199. /* purge +-0 and tiny arguments */
  200. *signgamp = 1-2*((uint32_t)hx>>31);
  201. if(ix<0x3c700000) { /* |x|<2**-56, return -log(|x|) */
  202. if((ix|lx)==0)
  203. return one/vzero;
  204. return -__ieee754_log(fabs(x));
  205. }
  206. /* purge negative integers and start evaluation for other x < 0 */
  207. if(hx<0) {
  208. *signgamp = 1;
  209. if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
  210. return one/vzero;
  211. t = sin_pi(x);
  212. if(t==zero) return one/vzero; /* -integer */
  213. nadj = __ieee754_log(pi/fabs(t*x));
  214. if(t<zero) *signgamp = -1;
  215. x = -x;
  216. }
  217. /* purge 1 and 2 */
  218. if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
  219. /* for x < 2.0 */
  220. else if(ix<0x40000000) {
  221. if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
  222. r = -__ieee754_log(x);
  223. if(ix>=0x3FE76944) {y = one-x; i= 0;}
  224. else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
  225. else {y = x; i=2;}
  226. } else {
  227. r = zero;
  228. if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
  229. else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
  230. else {y=x-one;i=2;}
  231. }
  232. switch(i) {
  233. case 0:
  234. z = y*y;
  235. p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
  236. p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
  237. p = y*p1+p2;
  238. r += p-y/2; break;
  239. case 1:
  240. z = y*y;
  241. w = z*y;
  242. p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
  243. p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
  244. p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
  245. p = z*p1-(tt-w*(p2+y*p3));
  246. r += tf + p; break;
  247. case 2:
  248. p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
  249. p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
  250. r += p1/p2-y/2;
  251. }
  252. }
  253. /* x < 8.0 */
  254. else if(ix<0x40200000) {
  255. i = x;
  256. y = x-i;
  257. p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
  258. q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
  259. r = y/2+p/q;
  260. z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
  261. switch(i) {
  262. case 7: z *= (y+6); /* FALLTHRU */
  263. case 6: z *= (y+5); /* FALLTHRU */
  264. case 5: z *= (y+4); /* FALLTHRU */
  265. case 4: z *= (y+3); /* FALLTHRU */
  266. case 3: z *= (y+2); /* FALLTHRU */
  267. r += __ieee754_log(z); break;
  268. }
  269. /* 8.0 <= x < 2**56 */
  270. } else if (ix < 0x43700000) {
  271. t = __ieee754_log(x);
  272. z = one/x;
  273. y = z*z;
  274. w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
  275. r = (x-half)*(t-one)+w;
  276. } else
  277. /* 2**56 <= x <= inf */
  278. r = x*(__ieee754_log(x)-one);
  279. if(hx<0) r = nadj - r;
  280. return r;
  281. }
  282. #if (LDBL_MANT_DIG == 53)
  283. __weak_reference(lgamma_r, lgammal_r);
  284. #endif