k_tan.c 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. /* @(#)k_tan.c 1.5 04/04/22 SMI */
  2. /*
  3. * ====================================================
  4. * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
  5. *
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /* INDENT OFF */
  12. #include "cdefs-compat.h"
  13. //__FBSDID("$FreeBSD: src/lib/msun/src/k_tan.c,v 1.13 2008/02/22 02:30:35 das Exp $");
  14. /* __kernel_tan( x, y, k )
  15. * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
  16. * Input x is assumed to be bounded by ~pi/4 in magnitude.
  17. * Input y is the tail of x.
  18. * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
  19. *
  20. * Algorithm
  21. * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
  22. * 2. Callers must return tan(-0) = -0 without calling here since our
  23. * odd polynomial is not evaluated in a way that preserves -0.
  24. * Callers may do the optimization tan(x) ~ x for tiny x.
  25. * 3. tan(x) is approximated by a odd polynomial of degree 27 on
  26. * [0,0.67434]
  27. * 3 27
  28. * tan(x) ~ x + T1*x + ... + T13*x
  29. * where
  30. *
  31. * |tan(x) 2 4 26 | -59.2
  32. * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
  33. * | x |
  34. *
  35. * Note: tan(x+y) = tan(x) + tan'(x)*y
  36. * ~ tan(x) + (1+x*x)*y
  37. * Therefore, for better accuracy in computing tan(x+y), let
  38. * 3 2 2 2 2
  39. * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
  40. * then
  41. * 3 2
  42. * tan(x+y) = x + (T1*x + (x *(r+y)+y))
  43. *
  44. * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
  45. * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
  46. * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
  47. */
  48. #include <openlibm_math.h>
  49. #include "math_private.h"
  50. static const double xxx[] = {
  51. 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
  52. 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
  53. 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
  54. 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
  55. 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
  56. 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
  57. 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
  58. 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
  59. 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
  60. 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
  61. 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
  62. -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
  63. 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
  64. /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
  65. /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
  66. /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
  67. };
  68. #define one xxx[13]
  69. #define pio4 xxx[14]
  70. #define pio4lo xxx[15]
  71. #define T xxx
  72. /* INDENT ON */
  73. DLLEXPORT double
  74. __kernel_tan(double x, double y, int iy) {
  75. double z, r, v, w, s;
  76. int32_t ix, hx;
  77. GET_HIGH_WORD(hx,x);
  78. ix = hx & 0x7fffffff; /* high word of |x| */
  79. if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
  80. if (hx < 0) {
  81. x = -x;
  82. y = -y;
  83. }
  84. z = pio4 - x;
  85. w = pio4lo - y;
  86. x = z + w;
  87. y = 0.0;
  88. }
  89. z = x * x;
  90. w = z * z;
  91. /*
  92. * Break x^5*(T[1]+x^2*T[2]+...) into
  93. * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
  94. * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
  95. */
  96. r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
  97. w * T[11]))));
  98. v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
  99. w * T[12])))));
  100. s = z * x;
  101. r = y + z * (s * (r + v) + y);
  102. r += T[0] * s;
  103. w = x + r;
  104. if (ix >= 0x3FE59428) {
  105. v = (double) iy;
  106. return (double) (1 - ((hx >> 30) & 2)) *
  107. (v - 2.0 * (x - (w * w / (w + v) - r)));
  108. }
  109. if (iy == 1)
  110. return w;
  111. else {
  112. /*
  113. * if allow error up to 2 ulp, simply return
  114. * -1.0 / (x+r) here
  115. */
  116. /* compute -1.0 / (x+r) accurately */
  117. double a, t;
  118. z = w;
  119. SET_LOW_WORD(z,0);
  120. v = r - (z - x); /* z+v = r+x */
  121. t = a = -1.0 / w; /* a = -1.0/w */
  122. SET_LOW_WORD(t,0);
  123. s = 1.0 + t * z;
  124. return t + a * (s + t * v);
  125. }
  126. }